flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Spain’s Loyola University earns world’s first LEED Platinum verification for an ‘integrated campus’

University Buildings

Spain’s Loyola University earns world’s first LEED Platinum verification for an ‘integrated campus’

luis vidal + architects designed the project.


By David Malone, Associate Editor | August 31, 2020
Loyola University Seville integrated campus

Photo courtesy luis vidal + architects

The newly designed 312,000-sf Loyola University Campus in Seville, Spain has become the world’s first integrated campus to receive LEED Platinum, the highest environmental rating by the U.S. Green Building Council. The multipurpose facility, which also aims to be the first ‘5G Campus’ in the world, was designed to accommodate numerous aspects of learning and university life.

The $29 million project places all of the classrooms, laboratories, and common spaces (including the cafeteria and auditorium), which totals 265,000-sf, in a single, optimized building. The sports building, library, lockers, access building, and chapel, which totals over 47,000-sf of additional space, complete the complex.

Given Seville’s Mediterranean climate, where high temperatures are often the norm, special attention was paid to controlling sunlight. “The project makes use of the lessons learned in T2 at Heathrow Airport in the U.K., and incorporates textile technology – the design of an external element, ‘the candle,’ which controls the light that penetrates the buildings,” said Luis Vidal, President and Founding Partner at luis vidal + architects, in a release. “The campus also consists of a sequence of open and closed spaces, designed to provide self-shading.”

 

See also: Students aren’t the only ones who have returned to Austin College in Texas

 

Winter/summer plazas change with the seasons to provide comfortable outdoor space for students. During summer these plazas benefit from the sun shading of the buildings, generating spaces sheltered from the Western sunlight. In addition, the presence of water cools down the temperature and creates a microclimate of a certain comfort. During winter plazas heat up with sunlight, in its lowest angles of incidence and, they are protected from the prevailing winds.

The campus’ roof, facades, and windows were designed to minimize sizable energy losses. Photovoltaic panels were also installed to reduce the net-energy consumption of the building. A water recovery system was also incorporated. More than 20% of the building materials come from previous uses, and more than 30% of the materials were locally extracted from the surrounding area.

Project construction was wrapped in 17 months.

Related Stories

| Oct 14, 2011

University of New Mexico Science & Math Learning Center attains LEED for Schools Gold

Van H. Gilbert architects enhances sustainability credentials.

| Oct 12, 2011

Bulley & Andrews celebrates 120 years of construction

The family-owned and operated general contractor attributes this significant milestone to the strong foundation built decades ago on honesty, integrity, and service in construction. 

| Sep 30, 2011

Design your own floor program

Program allows users to choose from a variety of flooring and line accent colors to create unique floor designs to complement any athletic facility. 

| Sep 23, 2011

Okanagan College sets sights on Living Buildings Challenge

The Living Building Challenge requires projects to meet a stringent list of qualifications, including net-zero energy and water consumption, and address critical environmental, social and economic factors. 

| Sep 14, 2011

Research shows large gap in safety focus

82% of public, private and 2-year specialized colleges and universities believe they are not very effective at managing safe and secure openings or identities. 

| Sep 7, 2011

KSS Architects wins AIA NJ design award

The project was one of three to win the award in the category of Architectural/Non-Residential. 

| May 18, 2011

Major Trends in University Residence Halls

They’re not ‘dorms’ anymore. Today’s collegiate housing facilities are lively, state-of-the-art, and green—and a growing sector for Building Teams to explore.

| May 18, 2011

Raphael Viñoly’s serpentine-shaped building snakes up San Francisco hillside

The hillside location for the Ray and Dagmar Dolby Regeneration Medicine building at the University of California, San Francisco, presented a challenge to the Building Team of Raphael Viñoly, SmithGroup, DPR Construction, and Forell/Elsesser Engineers. The 660-foot-long serpentine-shaped building sits on a structural framework 40 to 70 feet off the ground to accommodate the hillside’s steep 60-degree slope.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021