flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Amazon will heat its new Seattle campus with waste heat from next-door data centers

Energy Efficiency

Amazon will heat its new Seattle campus with waste heat from next-door data centers

Up to 4 million kilowatt-hours of energy will be saved each year.  


By John Caulfield, Senior Editor | November 16, 2015

Amazon's Denny Triangle campus in Seattle. Rendering courtesy NBBJ

Next month, Amazon.com is scheduled to open the first phase of its massive Denny Triangle campus in Seattle. Through a unique partnership, the spheres and towers that comprise Amazon’s four-block, 4-million-sf campus will be heated by waste heat recovered from the 34-story Westin Building Exchange across the street.

The Seattle Times reports that 70% of the Westin Building Exchange’s 400,000 sf is dedicated to data centers that are throwing off tremendous amounts of excess heat.

The building produces heat equivalent to 11 megawatts per day. Through an agreement with Pacific Northwest, which routes nearly all of its Internet traffic through the data centers in Westin, the building will transfer up to five megawatts to Amazon, which is purchasing the energy at a discounted rate. Recapturing this waste heat is expected to save about 4 million kilowatt-hours of energy per year.

Here’s how this system will work, according to the Times and the Seattle Post-Intelligencer:  When the Amazon buildings need heat, that will signal two heat pumps that collect heat from the data centers in the Westin Building Exchange, and use it to heat water traveling via pipes from the roof of the Westin building and through its floors to a refrigerator-sized steel-plated heat exchanger in Westin’s basement.

 

Image courtesy Amazon.com and McKinstry.

 

By the time that water reaches the exchanger, its temperature exceeds 70 degrees Fahrenheit. The exchanger transfers that heat through pipes running under the street to Amazon’s campus, which returns cooler water via the exchanger to the data centers.

When this system is fully functional, it will be circulating up to 3,000 gallons of water per minute.

Several entities collaborated on this project, which has been in the works for three years. They include McKinstry, which designed the heat-exchange system; and Clise Development, which co-owns the Westin Building Exchange with Digital Realty Trust, and sold Amazon the four blocks for its campus. Clise and McKinstry formed a partnership called Eco District for this project.

The agreement also involved several city agencies including its office of sustainability and environment. The Post-Intelligencer reports that one of Amazon’s building is already using this so-called district heating system that will ultimately provide heat for more than 3 million sf of office space.

Richard Stevenson, Clise Properties’ president, estimates the cost of this system in “the low millions” that would pay for itself in energy savings.

While heat exchange isn’t a new concept, it usually involves only one building, and rarely on the scale of this project. The Times quotes Susan Wickwire, executive director of the Seattle 2030 District—which aims to significantly reduce energy and water use in buildings in Seattle by 2030—who believes the arrangement between Amazon and Pacific Northwest could provide “a smooth path” for similar agreements where building occupants work together to save energy and make their operations more efficient.

“We’re showing people it can be done,” John Schoettler, Amazon’s director of global real estate, told the Times. “If other developments can model this, that’s a win-win.”

Amazon’s Denny Triangle campus, designed by NBBJ, will include three intersecting glass spheres that form a five-story office building, a 38-story tower, and 18,000 sf of retail. Amazon expects to be fully moved into these buildings in a couple of years.

Related Stories

K-12 Schools | Jan 24, 2018

Hawaii’s first net-zero public school

G70 is the architect, planner, and civil engineer of record for the project.

Energy | Jan 12, 2018

Putting wastewater to work: America’s next great energy source

As much as 40 to 50% of a building’s energy literally goes down the drain every day.

Energy | Jan 11, 2018

Harvesting energy and profits: A new approach to MEP cost analysis

In the course of providing cost estimating services, educating the client on making prudent choices is a high priority.

Energy Efficiency | Dec 19, 2017

New building energy quotient portal gives quick analysis on energy performance

ASHRAE tool provides more automated approach to receive Building EQ Performance Score.

K-12 Schools | Oct 28, 2017

A new elementary school in Cambridge, Mass., aims at being a pilot for that city’s NZE commitment

The building’s programming will provide more access to the community at large. 

Codes and Standards | Oct 23, 2017

Energy efficiency investments on the rise; will increase next year

Survey of facility management executives shows onsite renewables, energy storage will spike in 2018.

Energy Efficiency | Sep 15, 2017

To reach ambitious energy targets, firms must dig deeper

The number of firms involved in AIA’s voluntary pact to slash energy consumption in buildings grew to more than 400 in July.

Green | Jul 18, 2017

Garden of the Four Seasons lets you experience all four seasons at once

Carlo Ratti Associati designed the garden with an innovative net-zero energy climate control system.

Sustainability | Jun 28, 2017

Mohawk College will have one of the region’s first net-zero energy institutional buildings

The project’s net-zero goals led to the development of a new curtain wall system.

Game Changers | Jan 18, 2017

Turning friction into power

Research on piezoelectricity moves closer to practical applications for infrastructure and buildings.

boombox1
boombox2
native1

More In Category



Government Buildings

One of the country’s first all-electric fire stations will use no outside energy sources

Charlotte, N.C.’s new Fire Station #30 will be one of the country’s first all-electric fire stations, using no outside energy sources other than diesel fuel for one or two of the fire trucks. Multiple energy sources will power the station, including solar roof panels and geothermal wells. The two-story building features three truck bays, two fire poles, dispatch area, contamination room, and gear storage.


Geothermal Technology

Rochester, Minn., plans extensive geothermal network

The city of Rochester, Minn., home of the famed Mayo Clinic, is going big on geothermal networks. The city is constructing Thermal Energy Networks (TENs) that consist of ambient pipe loops connecting multiple buildings and delivering thermal heating and cooling energy via water-source heat pumps.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021