flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

World's tallest all-wood residential structure opens in London

World's tallest all-wood residential structure opens in London

An eco-focused Building Team employs 'jumbo plywood' and modern prefabrication techniques to create the world's tallest all-wood residential structure.


By By David Barista, Managing Editor | August 11, 2010
This article first appeared in the 200906 issue of BD+C.
In an effort to reduce carbon dioxide emissions and reliance on fossil
fuels, the design team for the nine-story, 30-meter-tall Stadthaus tower
in East London chose to build the structure entirely in wood.


At a glance, East London's newest high-rise apartment complex looks like your typical multifamily residential tower. All 29 units in the nine-story, mixed-use development come standard with hardwood floors, granite countertops, stainless-steel appliances, and exterior balconies. Bright-white plasterboard finishes provide a blank canvas for residents, while large, operable windows let in fresh air and offer views of the surrounding Hackney borough.

But behind the high-end finishes is an all-wood structure that is as unconventional as construction gets these days. When it was completed this past January, the 30-meter Stadthaus tower stood as the world's tallest residential structure constructed entirely in timber and one of the tallest all-wood buildings on the planet.

Why use wood when concrete and steel are proven, economical solutions for high-rise construction?

The tower’s structural system consists of cross-laminated timber (CLT) panels pieced together to form load-bearing walls and floors. Even the
elevator and stair shafts are constructed of prefabricated CLT.


For design architect Andrew Waugh, the decision to go with wood was purely a sustainable one.

"We'd been looking for ways in which we could replace concrete and steel construction wherever possible in an effort to reduce carbon dioxide emissions and reliance on fossil fuels," says Waugh, director of Waugh Thistleton Architects, which teamed with structural engineer Techniker Ltd. (both based in London) to design the structure for owner/developer Telford Homes, Hertfordshire.

Waugh says that by using wood for the structure instead of concrete or steel, the team was able to construct a building that has far less embodied CO2 emissions and reliance on fossil fuel—calculations show that the building will be carbon-neutral in just 21 years. The prospect of long-term CO2 emissions savings was enough to convince the client and local code and city officials to move ahead with the unusual, all-wood design scheme.

        

The finished apartments look like typical multifamily residential units, with bright-white plasterboard finishes and large, operable windows. But behind the plasterboard are solid wood panels instead of traditional steel or wood studs. The wall panels are 41/2 inches thick and the floor panels are six inches thick.


Since traditional wood-frame construction is not rated for buildings taller than three or four stories, the design team had to come up with an alternative construction method for the Stadthaus project. Waugh's design team found a solution in cross-laminated timber (CLT), a process by which wood sandwich panels are formed by gluing timber strips together in a crisscross pattern to create a solid mass element with minimal movement characteristics.

"It's basically jumbo plywood," says Waugh, who says the panels can be anywhere from just under two inches thick to three feet thick, depending on the application. The result is a structurally rated unit that can be integrated with other panels to form load-bearing walls and floors for mid- and high-rise structures—without the need for concrete or steel structural members.

At Stadthaus, even the elevator and stair shafts are constructed of prefabricated CLT. The only concrete used in the building is for the foundation system and two-inch-thick floating slabs atop the timber floors for acoustical insulation.

Cross-section shows the simplicity of the structural design. The cross-laminated timber walls and floors are held together with steel angles and screws.


The design team specified 4½-inch-thick panels for the walls and six-inch-thick panels for the floors. Austria-based KLH fabricated panels and erected the final structure. All door and window openings were cut out in the factory using a CNC router. The finished panels were shipped to the job site, where they were craned into position and secured using two-inch galvanized steel angles and three-inch screws. In areas where additional reinforcement was required, screws were added to strengthen the structure. Progressive collapse is avoided by providing sufficient redundancy so that any single element can be removed without structural failure.

"The beauty behind the whole system is that it's incredibly simple," says Waugh, adding that it took the four-man KLH construction crew just 27 days to erect the nine-story structure. The construction time savings helped to compress the overall project schedule to just 46 weeks—40% shorter than if the team used traditional concrete frame construction, according to Waugh. "The guys building the structure come from the same factory where the timber panels were manufactured, so the understanding of the material is constant throughout the process."

Like most CLT manufacturers, KLH uses formaldehyde-free adhesive products, such as PUR, to form the panels, which are manufactured in 10×40-foot sheets. The panels have zero off-gassing and can be converted into biomass fuel at the end of their useful life—a process that KLH relies on to power its manufacturing facility and a nearby village.

"The material itself has an asset value throughout its life, unlike strand board, which is held together with formaldehyde- or solvent-based adhesives and must go into landfill," says Waugh. This means that the Stadthaus tower is completely recyclable and may one day be dismantled to help power London's omnibuses—or its electrical grid.

Related Stories

Giants 400 | Aug 7, 2015

UNIVERSITY SECTOR GIANTS: Collaboration, creativity, technology—hallmarks of today’s campus facilities

At a time when competition for the cream of the student/faculty crop is intensifying, colleges and universities must recognize that students and parents are coming to expect an education environment that foments collaboration, according to BD+C's 2015 Giants 300 report.

Giants 400 | Aug 7, 2015

RECONSTRUCTION AEC GIANTS: Restorations breathe new life into valuable older buildings

AEC Giants discuss opportunities and complications associated with renovation, restoration, and adaptive reuse construction work.

BIM and Information Technology | Aug 6, 2015

After refueling its capital tank, WeWork acquires BIM consultant Case

The merger is expected to help standardize how WeWork designs and builds out office space. 

Giants 400 | Aug 6, 2015

BIM GIANTS: Robotic reality capture, gaming systems, virtual reality—AEC Giants continue tech frenzy

Given their size, AEC Giants possess the resources and scale to research and test the bevy of software and hardware solutions on the market. Some have created internal innovation labs and fabrication shops to tinker with emerging technologies and create custom software tools. Others have formed R&D teams to test tech tools on the job site.

Giants 400 | Aug 6, 2015

GIANTS 300 REPORT: Top 115 Healthcare Architecture Firms

HDR, Stantec, and Perkins+Will top Building Design+Construction's 2015 ranking of the largest healthcare architecture and architecture/engineering firms in the U.S. 

Giants 400 | Aug 6, 2015

HEALTHCARE AEC GIANTS: Hospital and medical office construction facing a slow but steady recovery

Construction of hospitals and medical offices is expected to shake off its lethargy in 2015 and recover modestly over the next several years, according to BD+C's 2015 Giants 300 report.

Codes and Standards | Aug 6, 2015

ConsensusDocs releases new CM agency contract standard agreement

For use when owner acts as the construction manager, hires a construction manager, or uses multiple prime contractors

Giants 400 | Aug 5, 2015

GIANTS 300 REPORT: Top 135 Office Sector Architecture Firms

Gensler, HOK, and Perkins+Will top BD+C's ranking of the nation's largest office sector architecture and architecture/engineering firms. 

Giants 400 | Aug 5, 2015

OFFICE SECTOR GIANTS: Today’s workplace design must appeal to Millennials’ ‘activity-based’ lifestyle

Office market AEC Giants discuss the latest trends workplace design, and the state of the office construction sector.

Giants 400 | Aug 5, 2015

GIANTS 300 REPORT: Top 37 Engineering/Architecture Firms

Jacobs, AECOM, and Thornton Tomasetti head Building Design+Construction's 2015 ranking of the largest engineering/architecture firms in the United States. 

boombox1
boombox2
native1

More In Category

Warehouses

California bill would limit where distribution centers can be built

A bill that passed the California legislature would limit where distribution centers can be located and impose other rules aimed at reducing air pollution and traffic. Assembly Bill 98 would tighten building standards for new warehouses and ban heavy diesel truck traffic next to sensitive sites including homes, schools, parks and nursing homes.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021