flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Understanding retro commissioning

Engineers

Understanding retro commissioning

For owners of existing buildings, retrocommissioning creates a baseline to compare future building energy consumption. 


By Davide Vettraino and Michael Morrissey, NV5 | February 24, 2017

Sub-metering refers to monitoring systems added on specific equipment, systems, processes, or floors to determine where energy is being used. Tracking energy consumption through sub-metering is currently at a 40—60% ratio of clients who do and do not install sub-metering.

One of the biggest criticisms of the LEED process is its claim that using it will help save on operating costs, while in fact, many projects don’t reach that goal. Of course, until a building is completed and systems begin to operate, the owner doesn’t know how much energy the building really uses. Once a building has some history, energy models can be modified to make better projections for the building’s energy consumption. But the owner may not get all the answers if adequate metering systems are not in place to measure the energy loads of the building.

The best way to track sources of energy consumption and verify any savings is to install some type of sub-metering. Before this can be done in existing buildings, the building owner needs to consider the many factors that pour into energy usage and how to track them. This can be done through the process of retrocommissioning, which typically has three phases: planning, investigation, and implementation. It starts with evaluation of the building and its systems which can include heating, ventilation, cooling, electrical, and control and cabling systems.

Retrocommissioning is basically redoing the commissioning process by looking at how the building systems are operating (by installing temporary metering equipment), identifying the optimal performance for equipment and fine tuning everything. This can be quite a challenge since existing buildings may have a variety of equipment that may have been installed at different times. It might mean replacing older or poorly working systems or getting new and old systems working together.

Evaluating options

An energy audit is the first step in determining where building owners want to save money and what they are trying to accomplish. Through a step-by-step process, we look at how energy is being used. Then we identify opportunities for change and work with clients to choose which ones to implement. Our energy audits are done through the multi-level ASHRAE system.  Level 1 is a walk-through analysis; Level 2 is the energy survey and analysis; and Level 3 is the detailed analysis with a list of suggested capital modifications.  Usually Level 2 is where the core of the work gets done.

THE PROCESS
Retrocommissioning is a method of reviewing existing building operating systems, identifying optimal performance and establishing a step-by-step process for improvement. 
• Determine objectives
• Evaluate current systems
• Install monitoring as needed
• Identify optimal performance factors
• Create implementation plan and documentation

This process creates a dashboard for evaluating operating systems and a plan to optimize energy usage. A number of different programs can be set up to monitor what the building is doing so issues can be corrected. Having an information control system in place also means being able to troubleshoot items faster.  Part of that means having algorithms built into the building management system.  For instance, if there are 20 air handlers running and one of the units starts to operate outside the system set points, the algorithm that continuously reviews the units operation, notifies the facility operator of the issue, so the operator can investigate and take corrective measures.

Another building management system algorithm that is sometimes used can track when people arrive at the building(s) in the morning and set the systems to warm the building(s) up in a more efficient manner. Trying to tweak things like this means learning the behavior of building occupants to optimize programs.

Motion sensors and occupancy control systems can also help and have become very popular. Now, there is a big push to have controls on electric outlets so they will turn off when the building is in unoccupied mode to reduce plug loads. Given the number of outlets in most buildings, this can be a very expensive proposition. As we try to get to net zero, concepts like this can help control what the end user does in the building, but all have a cost that may or may not be offset by energy savings.

Monitoring systems

We find it really comes down to having an engineered systematic approach that involves putting in sub-metering to monitor where the energy is being used for both electric and gas. Every utility has a meter. Sub-metering refers to the monitoring system that is added on specific equipment, systems, processes, or floors. Some clients install extensive sub-metering while others choose a simple one, depending on cost to install and the projected payback.

Tracking energy consumption through sub-metering is currently at a 40-to-60 percent ratio of clients who do and those who do not install sub-metering in their projects. As price per kilowatt hour increases, metering is becoming more prevalent because it gives building owners the information they need to bring down usage costs. The types of buildings most viable for sub-metering include laboratory environments, such as pharmaceutical research and development, data centers, and commercial real estate.

Regional factors

Retrocommissioning and continuously monitoring (commissioning) systems are becoming more attractive in certain geographical areas as well.  In the Northeastern United States, for example, it comes down to environment and utility rates. The energy usage is higher and rates are higher in this area, making it much more attractive for building owners to use these programs. In our experience, retrocommissioning has achieved between 30 and 40 percent cost savings.

If an owner can get a rebate for buying new equipment such as a chiller, that can mean additional benefits. New York City has programs that help consumers based on local laws (LLs).  This includes LL84 which calls for benchmarking the property; LL85 that deals with energy conservation; LL87 that encourages energy audits when you retrocommission; and LL88 for metering. These laws apply when a building owner goes through the program and applies for rebates related to it. This is just one example of how utility, city, or state programs are proving helpful.

Long-term payback

The benefits of retrocommissioning are ongoing. Upon completion of retrocommissioning, the team identifies low cost and approved items based on their investigation and will work with the client through implementation. This will sometimes include developing a systems manual for all the installed equipment. This manual is used in training the facilities staff to understand the best practices for the operation and maintenance of these new systems.

For owners of existing buildings, retrocommissioning creates a baseline to compare future building energy consumption. Continuously monitoring systems can be installed to maintain the building improved performance and to identity issues faster and more efficiently. 

 

DAVIDE VETTRAINO is Vice President, Regional Business Unit Leader, NV5 Northeast Region in Woburn, MA. He has more than 30 years of experience providing strategic leadership to high-growth organizations and is currently principal-in-charge of the Boston location, responsible for strategic planning, client relationships and professional development. He implements initiatives to improve quality, client satisfaction, and bottom-line financial performance. He can be reached at dvettraino@sebesta.com.


MICHAEL MORRISSEY, LEED AP, BSC is Senior Group Leader, NV5 Northeast region. He has more than 27 years of experience in the engineering field, in design, construction, and commissioning and is a LEED Accredited Professional; NEBB Certified Professional for Building System Commissioning; American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). His specialties include commissioning, LEED consulting and administration, retro-commissioning, TAB (NEBB), O&M operations and support services energy management, HVAC system design, healthcare and lab facilities. He can be reached at mmorrissey@sebesta.com.

Tags

Related Stories

| Nov 3, 2010

Senior housing will be affordable, sustainable

Horizons at Morgan Hill, a 49-unit affordable senior housing community in Morgan Hill, Calif., was designed by KTGY Group and developed by Urban Housing Communities. The $21.2 million, three-story building will offer 36 one-bed/bath units (773 sf) and 13 two-bed/bath units (1,025 sf) on a 2.6-acre site.

| Nov 3, 2010

Designs complete for new elementary school

SchenkelShultz has completed design of the new 101,270-sf elementary Highlands Elementary School, as well as designs for three existing buildings that will be renovated, in Kissimmee, Fla. The school will provide 48 classrooms for 920 students, a cafeteria, a media center, and a music/art suite with outdoor patio. Three facilities scheduled for renovations total 19,459 sf and include an eight-classroom building that will be used as an exceptional student education center, a older media center that will be used as a multipurpose building, and another building that will be reworked as a parent center, with two meeting rooms for community use. W.G. Mills/Ranger is serving as CM for the $15.1 million project.

| Nov 3, 2010

Chengdu retail center offers a blend of old and new China

The first phase of Pearl River New Town, an 80-acre project in Chengdu, in China’s Wenjiang District, is under way along the banks of the Jiang’an River. Chengdu was at one time a leading center for broadcloth production, and RTKL, which is overseeing the project’s master planning, architecture, branding, and landscape architecture, designed the project’s streets, pedestrian pathways, and bridges to resemble a woven fabric.

| Nov 3, 2010

Rotating atriums give Riyadh’s first Hilton an unusual twist

Goettsch Partners, in collaboration with Omrania & Associates (architect of record) and David Wrenn Interiors (interior designer), is serving as design architect for the five-star, 900-key Hilton Riyadh.

| Nov 3, 2010

Virginia biofuel research center moving along

The Sustainable Energy Technology Center has broken ground in October on the Danville, Va., campus of the Institute for Advanced Learning and Research. The 25,000-sf facility will be used to develop enhanced bio-based fuels, and will house research laboratories, support labs, graduate student research space, and faculty offices. Rainwater harvesting, a vegetated roof, low-VOC and recycled materials, photovoltaic panels, high-efficiency plumbing fixtures and water-saving systems, and LED light fixtures will be deployed. Dewberry served as lead architect, with Lord Aeck & Sargent serving as laboratory designer and sustainability consultant. Perigon Engineering consulted on high-bay process labs. New Atlantic Contracting is building the facility.

| Nov 3, 2010

Dining center cooks up LEED Platinum rating

Students at Bowling Green State University in Ohio will be eating in a new LEED Platinum multiuse dining center next fall. The 30,000-sf McDonald Dining Center will have a 700-seat main dining room, a quick-service restaurant, retail space, and multiple areas for students to gather inside and out, including a fire pit and several patios—one of them on the rooftop.

| Nov 2, 2010

11 Tips for Breathing New Life into Old Office Spaces

A slowdown in new construction has firms focusing on office reconstruction and interior renovations. Three experts from Hixson Architecture Engineering Interiors offer 11 tips for office renovation success. Tip #1: Check the landscaping.

| Nov 2, 2010

Cypress Siding Helps Nature Center Look its Part

The Trinity River Audubon Center, which sits within a 6,000-acre forest just outside Dallas, utilizes sustainable materials that help the $12.5 million nature center fit its wooded setting and put it on a path to earning LEED Gold.

| Nov 2, 2010

A Look Back at the Navy’s First LEED Gold

Building Design+Construction takes a retrospective tour of a pace-setting LEED project.

| Nov 2, 2010

Wind Power, Windy City-style

Building-integrated wind turbines lend a futuristic look to a parking structure in Chicago’s trendy River North neighborhood. Only time will tell how much power the wind devices will generate.

boombox1
boombox2
native1

More In Category


Healthcare Facilities

Watch on-demand: Key Trends in the Healthcare Facilities Market for 2024-2025

Join the Building Design+Construction editorial team for this on-demand webinar on key trends, innovations, and opportunities in the $65 billion U.S. healthcare buildings market. A panel of healthcare design and construction experts present their latest projects, trends, innovations, opportunities, and data/research on key healthcare facilities sub-sectors. A 2024-2025 U.S. healthcare facilities market outlook is also presented.



halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021