flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Six-story living wall improves building performance at University of Ottawa

Sponsored Content Green

Six-story living wall improves building performance at University of Ottawa

The green plant wall provides a striking contrast to the glass and steel structure.


By Nedlaw | October 22, 2015
The biofilter provides the majority of the building's fresh air intake to substantially reduce energy usage.

The biofilter provides the majority of the building's fresh air intake to substantially reduce energy usage.

Located in the heart of University of Ottawa, the 15-story Vanier Hall functions as the new home of the large Faculty of Social Science and ‘stands tall’ as a living example of sustainable design boasting the intangibles of a rich and inspiring learning atmosphere, plus the measurable returns of energy saving technology.

From an exterior view, the green plant wall provides a striking contrast to the glass and steel structure. Once inside, visitors can fully appreciate a spectacular six-story-high feature – the largest living wall biofilter in North America at 1,370 square feet. In addition to the aesthetic impact, the biofilter is also part of the building’s sustainable design efforts.

Improves Air Quality and Building Performance

In simple terms, a Nedlaw Living Wall Biofilter is a working machine that harnesses nature’s remarkable ability to ‘eat’ pollutants. Contaminated indoor air is drawn through the biofilter where microorganisms on the root media consume airborne pollutants as food.  This removal process cleans 80 – 85% of volatile organic compounds (VOCs) from the air, creating virtual outside air. The cleansed air is then re-circulated through the buidling’s HVAC system.

The ‘soft’ benefits of the living wall include dust control, sound abatement, white noise in the form of running water, and a noticeable ‘smell’ of fresh air.

 

 

In terms of improving building performance, the biofilter at Vanier Hall can provide 75 – 80% of the building’s fresh air intake requirement, which not only enhances air quality but also significantly improves energy performance by reducing the amount of air intake and, consequently, heating and cooling costs. Additionally, the wall provides all of the building’s humidity and no mechanical humidification is needed.

The living wall biofilter at Vanier Hall includes energy smart features designed to address certain energy lapses in traditional building systems. For example, water recycled from storm water runoff and HVAC condensation is used for the hydroponic plant wall. According to Dr. Alan Darlington (founder of Nedlaw Living Walls), “We’ve done a lot of work to streamline and make this as efficient as possible without losing the aesthetics of this system.”

Calculating the ROI of Living Wall Biofilters

In recent years, Nedlaw has completed numerous studies to show the effectiveness of contaminant removal from indoor air and has now quantified the return on investment based on energy savings. By replacing outdoor air that needs to be conditioned, a Nedlaw Living Wall Biofilter reduces a building’s energy needs. In general terms, a fully-integrated biofilter can reduce energy costs by up to 30%, because the biofilters provide clean air at a fraction of the cost of traditional systems.

In a recent study completed for a major international retail chain, it was determined that the proposed living wall biofilter could provide 100 litres per second of outside air – meaning the building needed to take in that much less outside air.

Using the biofilter as a source of clean air would reduce the energy consumption of the HVAC system by 32.5 GJ of energy for square metre of biofilter used. If properly integrated into the building (for example, naturally lit and connected directly to the HVAC), the biofilter would require as little as 0.4 GJ of energy per square metre per year. This gives a total annual energy savings of the system of 32.1 GJ. This is equivalent to roughly 5 barrels of oil or 1.6 tonnes of CO2 saved per square metre of biofilter.

For this study, it was determined that approximately 400 m2 of biofilter would be used. Assuming a combined energy cost for electricity and natural gas of $10 USD per GJ and if the biofilter is used to its maximum potential then the payback period for the capital cost associated with the biofilter could be less than 3 - 5 years.

PROJECT DETAILS

Location: University of Ottawa, Vanier Hall
Architect: Diamond Schmitt Architects, KWC Architects
Award of Excellence / Interior Green Wall - Green Roofs for Healthy Cities
LEED Gold Certified

MEDIA COVERAGE

According to the University of Ottawa, the Nedlaw Living Wall Biofilter was a “cost-neutral initiative”

University of Ottawa Tower Wins 3 Awards

ABOUT NEDLAW LIVING WALL BIOFILTERS

Installation Options and Requirements             

Energy Benefits of a Living Wall Biofilter
 

Tags

Related Stories

| Feb 28, 2012

Roofing contractors recognized for workmanship

Sika Sarnafil announces Project of the Year winners; competition highlights visually stunning, energy efficient, and sustainable roofs.

| Feb 26, 2012

Milwaukee U-Haul facility receives LEED-CI Silver

The new elements of the facility now include: efficient lighting with day-lighting controls and occupancy sensors, a high-efficiency HVAC system used in conjunction with a newly constructed thermal envelope to help reduce energy consumption, and the installation of low-flow fixtures to reduce water consumption.

| Feb 22, 2012

Siemens earns LEED certification for Maryland office

The Beltsville facility, which also earned the ENERGY STAR Label for energy performance, implemented a range of energy efficiency, water conservation and sustainable operations measures as part of the certification process.

| Feb 22, 2012

Suffolk awarded Boston post office renovation project

Renovation of art deco landmark will add 21,000 square feet of retail and 110 new parking spaces.

| Feb 20, 2012

Comment period for update to USGBC's LEED Green Building Program now open

This third draft of LEED has been refined to address technical stringency and rigor, measurement and performance tools, and an enhanced user experience.

| Feb 17, 2012

Tremco Inc. headquarters achieves LEED Gold certification

Changes were so extensive that the certification is for new construction and not for renovation; officially, the building is LEED-NC.

| Feb 15, 2012

Code allowance offers retailers and commercial building owners increased energy savings and reduced construction costs

Specifying air curtains as energy-saving, cost-cutting alternatives to vestibules in 3,000-square-foot buildings and larger has been a recent trend among consulting engineers and architects.

| Feb 8, 2012

World’s tallest solar PV-installation

The solar array is at the elevation of 737 feet, making the building the tallest in the world with a solar PV-installation on its roof.

| Jan 31, 2012

Chapman Construction/Design: ‘Sustainability is part of everything we do’

Chapman Construction/Design builds a working culture around sustainability—for its clients, and for its employees.

| Jan 19, 2012

LEED puts the 'Gold' in Riverside golden arches

McDonald's restaurant recognized for significant energy savings.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021