flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Six-story living wall improves building performance at University of Ottawa

Sponsored Content Green

Six-story living wall improves building performance at University of Ottawa

The green plant wall provides a striking contrast to the glass and steel structure.


By Nedlaw | October 22, 2015
The biofilter provides the majority of the building's fresh air intake to substantially reduce energy usage.

The biofilter provides the majority of the building's fresh air intake to substantially reduce energy usage.

Located in the heart of University of Ottawa, the 15-story Vanier Hall functions as the new home of the large Faculty of Social Science and ‘stands tall’ as a living example of sustainable design boasting the intangibles of a rich and inspiring learning atmosphere, plus the measurable returns of energy saving technology.

From an exterior view, the green plant wall provides a striking contrast to the glass and steel structure. Once inside, visitors can fully appreciate a spectacular six-story-high feature – the largest living wall biofilter in North America at 1,370 square feet. In addition to the aesthetic impact, the biofilter is also part of the building’s sustainable design efforts.

Improves Air Quality and Building Performance

In simple terms, a Nedlaw Living Wall Biofilter is a working machine that harnesses nature’s remarkable ability to ‘eat’ pollutants. Contaminated indoor air is drawn through the biofilter where microorganisms on the root media consume airborne pollutants as food.  This removal process cleans 80 – 85% of volatile organic compounds (VOCs) from the air, creating virtual outside air. The cleansed air is then re-circulated through the buidling’s HVAC system.

The ‘soft’ benefits of the living wall include dust control, sound abatement, white noise in the form of running water, and a noticeable ‘smell’ of fresh air.

 

 

In terms of improving building performance, the biofilter at Vanier Hall can provide 75 – 80% of the building’s fresh air intake requirement, which not only enhances air quality but also significantly improves energy performance by reducing the amount of air intake and, consequently, heating and cooling costs. Additionally, the wall provides all of the building’s humidity and no mechanical humidification is needed.

The living wall biofilter at Vanier Hall includes energy smart features designed to address certain energy lapses in traditional building systems. For example, water recycled from storm water runoff and HVAC condensation is used for the hydroponic plant wall. According to Dr. Alan Darlington (founder of Nedlaw Living Walls), “We’ve done a lot of work to streamline and make this as efficient as possible without losing the aesthetics of this system.”

Calculating the ROI of Living Wall Biofilters

In recent years, Nedlaw has completed numerous studies to show the effectiveness of contaminant removal from indoor air and has now quantified the return on investment based on energy savings. By replacing outdoor air that needs to be conditioned, a Nedlaw Living Wall Biofilter reduces a building’s energy needs. In general terms, a fully-integrated biofilter can reduce energy costs by up to 30%, because the biofilters provide clean air at a fraction of the cost of traditional systems.

In a recent study completed for a major international retail chain, it was determined that the proposed living wall biofilter could provide 100 litres per second of outside air – meaning the building needed to take in that much less outside air.

Using the biofilter as a source of clean air would reduce the energy consumption of the HVAC system by 32.5 GJ of energy for square metre of biofilter used. If properly integrated into the building (for example, naturally lit and connected directly to the HVAC), the biofilter would require as little as 0.4 GJ of energy per square metre per year. This gives a total annual energy savings of the system of 32.1 GJ. This is equivalent to roughly 5 barrels of oil or 1.6 tonnes of CO2 saved per square metre of biofilter.

For this study, it was determined that approximately 400 m2 of biofilter would be used. Assuming a combined energy cost for electricity and natural gas of $10 USD per GJ and if the biofilter is used to its maximum potential then the payback period for the capital cost associated with the biofilter could be less than 3 - 5 years.

PROJECT DETAILS

Location: University of Ottawa, Vanier Hall
Architect: Diamond Schmitt Architects, KWC Architects
Award of Excellence / Interior Green Wall - Green Roofs for Healthy Cities
LEED Gold Certified

MEDIA COVERAGE

According to the University of Ottawa, the Nedlaw Living Wall Biofilter was a “cost-neutral initiative”

University of Ottawa Tower Wins 3 Awards

ABOUT NEDLAW LIVING WALL BIOFILTERS

Installation Options and Requirements             

Energy Benefits of a Living Wall Biofilter
 

Tags

Related Stories

Higher Education | Mar 23, 2015

Hong Kong university building will feature bioclimatic façade

The project's twin-tower design opens the campus up to the neighboring public green space, while maximizing the use of summer winds for natural ventilation.

Green | Mar 22, 2015

6 myths holding back green building

Sustainable design has proven benefits, so why isn’t it more widely adopted?

Green | Mar 18, 2015

Vertical urban greenhouses will feed import-reliant Jackson Hole, Wyo.

A Jackson Hole, Wyo., start up aims to reduce the city’s susceptibility to food deficits by building vertical greenhouses.

Sponsored | Energy Efficiency | Mar 16, 2015

California cuts its carbon footprint with solar

Spanning four locations in Central Valley, the California Renewable Energy Small Tariff projects pack a lot of power and are prime examples of the real-life benefits of going solar.

Codes and Standards | Mar 12, 2015

Energy Trust of Oregon offers financial incentives for net-zero buildings

The organization is offering technical assistance along with financial benefits.

Codes and Standards | Mar 5, 2015

AEC industry groups look to harmonize green building standards, codes

The USGBC, ASHRAE, ICC, IES, and AIA are collaborating on a single green code.

K-12 Schools | Feb 26, 2015

D.C.'s Dunbar High School is world's highest-scoring LEED school, earns 91% of base credits

The 280,000-sf school achieved 91 points, out of 100 base points possible for LEED, making it the highest-scoring school in the world certified under USGBC’s LEED for Schools-New Construction system.

Industrial Facilities | Feb 24, 2015

Starchitecture meets agriculture: OMA unveils design for Kentucky community farming facility

The $460 million Food Port project will define a new model for the relationship between consumer and producer.

Green | Feb 23, 2015

State of the green union, and the next big shift in sustainability

The history of the green movement offers cues that we are on the precipice of another significant shift in the green union.

Codes and Standards | Feb 18, 2015

USGBC concerned about developers using LEED registration in marketing

LEED administrators are concerned about a small group of developers or project owners who tout their projects as “LEED pre-certified” and then fail to follow through with certification.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021