flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Sealing the deal: An easier way to dike air leaks in buildings

Energy Efficiency

Sealing the deal: An easier way to dike air leaks in buildings

An aerosol product injected into ductwork allowed Hyundai to open its new U.S. HQs on time.


By John Caulfield, Senior Editor | March 19, 2015
Sealing the deal: An easier way to dike air leaks in buildings

This image shows how the sealant is injected into the shafts. Photo courtesy Hyundai

Energy efficiency has become such a common goal for new construction these days that it’s easy to forget that not every building is perfectly made, and that fixing problems that reduce a building’s efficiency after the construction work is mostly completed can be an expensive, lengthy process.

The Department of Energy estimates that hat 85% of buildings in the U.S. lose 30% to 40% of treated air through duct leaks, which can result in sizable energy costs, ventilation systems that don’t work, and mold and mildew problems.

Hyundai faced this very issue only weeks before the January 2014 scheduled opening of its $200 million, 500,000-sf, six-story U.S. headquarters in Fountain Valley, Calif. That opening was in danger of being delayed for months when excessive leaks were discovered in the structure’s four smoke evacuation shafts and outside air shaft.

Brian Berg, an associate principal with Glumac, the project’s Engineer of Record, notes that the building’s design posed some major challenges. The architect, Gensler, had specified that it didn’t want structural beams in any of the building’s usable space. So where to put those beams was left to the mechanical engineering team.

The decision was made to run beams and conduit through the building’s 8- by 6-foot shafts, which doubled as the building’s air ventilation system because the structure had been designed with no sheet-metal air ducts.

However, all of that metal running through the shafts inevitably poked some holes in them. In addition, not all of the joints in the shafts had been sealed properly. Testing determined that 14,861 cubic-feet-per-minute of air was leaking, or about 20%, well in excess of the 5% limit allowed by building codes.

“The supervisor on the Building Team was pretty tough,” wasn’t going to sign off on this project until the leakage problem was rectified, recalls Bob Evans, Hyundai’s Senior Project Manager. (Hyundai Amco America was the project’s GC.)

 

Hyundai shows how the sealant is injected into the shafts. Photo courtesy Hyundai

 

One solution considered was to build scaffolding inside each shaft in order to seal visible leaks in the interior fiberglass drywall by spraying those walls with rubberized foam. However, that process would have cost up to $1 million and would take months to complete.

Berg says he reached out to Glumac’s other offices around the country, and heard back from its Las Vegas office, which had just solved a leakage problem in a new city center it was working on by using a technology called aeroseal, which seals leaks from the inside of pressurized ductwork.

This product has been around since the mid 1990s, and its development funding had been sponsored by the Department of Energy. Evans says he had heard about it, but thought it was “like snake oil; you know, too good to be true.” But he did some research and found that aeroseal had been effective in sealing bricks and mortar buildings.

AWC, a certified aeroseal contractor, came on board and took a couple of weeks to complete the shafts, at a cost that Evans estimates was less than $150,000. The Building Team opened walls on at least one floor to conduct testing, and found that the leakage had fallen to 808 CFM, or less than 1.1%. A bonus, says Evans, is that the aeroseal sealed around the electrical plates and boxes, too.

The headquarters building was completed on time and opened on schedule. Berg says he’s been recommending aeroseal for other projects ever since, especially for existing buildings that can have a lot of leakage over time but would be difficult to fix.

 

 

This is what the shafts look like after the sealant is injected. Photo courtesy Hyundai

 

A tool measuring the air leakage after the shafts were sealed (less than 1%). Photo courtesy Hyundai

Related Stories

| Nov 11, 2011

By the Numbers

What do ‘46.9,’ ‘886.2,’ and ‘171,271’ mean to you? Check here for the answer.

| Nov 11, 2011

AIA: Engineered Brick + Masonry for Commercial Buildings

Earn 1.0 AIA/CES learning units by studying this article and successfully completing the online exam. 

| Nov 11, 2011

How Your Firm Can Win Federal + Military Projects

The civilian and military branches of the federal government are looking for innovative, smart-thinking AEC firms to design and construct their capital projects. Our sources give you the inside story.

| Nov 10, 2011

Grousbeck Center for Students & Technology opens doors

New Perkins School for the Blind Building is dedicated to innovation, interaction, and independence for students.

| Nov 10, 2011

Suffolk Construction awarded MBTA transit facility and streetscape project

The 21,000-sf project will feature construction of a cable-stayed pedestrian bridge over Ocean Avenue, an elevated plaza deck above Wonderland MBTA Station, a central plaza, and an at-grade pedestrian crossing over Revere Beach Boulevard

| Nov 10, 2011

Thornton Tomasetti’s Joseph and Choi to co-chair the Council on Tall Buildings and Urban Habitat’s Outrigger Design Working Group

Design guide will describe in detail the application of outriggers within the lateral load resisting systems of tall buildings, effects on building behavior and recommendations for design. 

| Nov 9, 2011

Lincoln Center Pavilion wins national architecture and engineering award

The project team members include owner Lincoln Center for the Performing Arts, New York; design architect and interior designer of the restaurant, Diller Scofidio + Renfro, New York; executive architect, FXFOWLE, New York; and architect and interior designer of the film center, Rockwell Group, New York; structural engineer Arup (AISC Member), New York; and general contractor Turner Construction Company (AISC Member), New York. 

| Nov 9, 2011

Sika Sarnafil Roof Recycling Program recognized by Society of Plastics Engineers

Program leads the industry in recovering and recycling roofing membrane into new roofing products.

| Nov 8, 2011

Transforming a landmark coastal resort

Originally built in 1973, the building had received several alterations over the years but the progressive deterioration caused by the harsh salt water environment had never been addressed.

boombox1
boombox2
native1

More In Category



Government Buildings

One of the country’s first all-electric fire stations will use no outside energy sources

Charlotte, N.C.’s new Fire Station #30 will be one of the country’s first all-electric fire stations, using no outside energy sources other than diesel fuel for one or two of the fire trucks. Multiple energy sources will power the station, including solar roof panels and geothermal wells. The two-story building features three truck bays, two fire poles, dispatch area, contamination room, and gear storage.


Geothermal Technology

Rochester, Minn., plans extensive geothermal network

The city of Rochester, Minn., home of the famed Mayo Clinic, is going big on geothermal networks. The city is constructing Thermal Energy Networks (TENs) that consist of ambient pipe loops connecting multiple buildings and delivering thermal heating and cooling energy via water-source heat pumps.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021