flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Sealing the deal: An easier way to dike air leaks in buildings

Energy Efficiency

Sealing the deal: An easier way to dike air leaks in buildings

An aerosol product injected into ductwork allowed Hyundai to open its new U.S. HQs on time.


By John Caulfield, Senior Editor | March 19, 2015
Sealing the deal: An easier way to dike air leaks in buildings

This image shows how the sealant is injected into the shafts. Photo courtesy Hyundai

Energy efficiency has become such a common goal for new construction these days that it’s easy to forget that not every building is perfectly made, and that fixing problems that reduce a building’s efficiency after the construction work is mostly completed can be an expensive, lengthy process.

The Department of Energy estimates that hat 85% of buildings in the U.S. lose 30% to 40% of treated air through duct leaks, which can result in sizable energy costs, ventilation systems that don’t work, and mold and mildew problems.

Hyundai faced this very issue only weeks before the January 2014 scheduled opening of its $200 million, 500,000-sf, six-story U.S. headquarters in Fountain Valley, Calif. That opening was in danger of being delayed for months when excessive leaks were discovered in the structure’s four smoke evacuation shafts and outside air shaft.

Brian Berg, an associate principal with Glumac, the project’s Engineer of Record, notes that the building’s design posed some major challenges. The architect, Gensler, had specified that it didn’t want structural beams in any of the building’s usable space. So where to put those beams was left to the mechanical engineering team.

The decision was made to run beams and conduit through the building’s 8- by 6-foot shafts, which doubled as the building’s air ventilation system because the structure had been designed with no sheet-metal air ducts.

However, all of that metal running through the shafts inevitably poked some holes in them. In addition, not all of the joints in the shafts had been sealed properly. Testing determined that 14,861 cubic-feet-per-minute of air was leaking, or about 20%, well in excess of the 5% limit allowed by building codes.

“The supervisor on the Building Team was pretty tough,” wasn’t going to sign off on this project until the leakage problem was rectified, recalls Bob Evans, Hyundai’s Senior Project Manager. (Hyundai Amco America was the project’s GC.)

 

Hyundai shows how the sealant is injected into the shafts. Photo courtesy Hyundai

 

One solution considered was to build scaffolding inside each shaft in order to seal visible leaks in the interior fiberglass drywall by spraying those walls with rubberized foam. However, that process would have cost up to $1 million and would take months to complete.

Berg says he reached out to Glumac’s other offices around the country, and heard back from its Las Vegas office, which had just solved a leakage problem in a new city center it was working on by using a technology called aeroseal, which seals leaks from the inside of pressurized ductwork.

This product has been around since the mid 1990s, and its development funding had been sponsored by the Department of Energy. Evans says he had heard about it, but thought it was “like snake oil; you know, too good to be true.” But he did some research and found that aeroseal had been effective in sealing bricks and mortar buildings.

AWC, a certified aeroseal contractor, came on board and took a couple of weeks to complete the shafts, at a cost that Evans estimates was less than $150,000. The Building Team opened walls on at least one floor to conduct testing, and found that the leakage had fallen to 808 CFM, or less than 1.1%. A bonus, says Evans, is that the aeroseal sealed around the electrical plates and boxes, too.

The headquarters building was completed on time and opened on schedule. Berg says he’s been recommending aeroseal for other projects ever since, especially for existing buildings that can have a lot of leakage over time but would be difficult to fix.

 

 

This is what the shafts look like after the sealant is injected. Photo courtesy Hyundai

 

A tool measuring the air leakage after the shafts were sealed (less than 1%). Photo courtesy Hyundai

Related Stories

| May 8, 2012

Skanska USA hires Zamrowski as senior project manager

In his new role at Skanska, Zamrowski will serve as the day-to-day on-site contact for select Pennsylvania-based projects during all phases of construction.

| May 8, 2012

Morgan/Harbour completes three projects at Columbia Centre

Projects completed on behalf of property owner, White Oak Realty Partners, LLC, Pearlmark Realty Partners, LLC and Angelo Gordon & Co.

| May 7, 2012

Best AEC Firms: MHTN Architects nine decades of dedication to Utah

This 65-person design firm has served Salt Lake City and the state of Utah for the better part of 90 years.

| May 3, 2012

U of Michigan team looking to create highly efficient building envelope designs

The system combines the use of sensors, novel construction materials, and utility control software in an effort to create technology capable of reducing a building’s carbon footprint.

| May 3, 2012

Zero Energy Research Lab opens at North Texas

The living lab—the only one of its kind in Texas—is designed to test various technologies and systems in order to achieve a net-zero consumption of energy.

| May 3, 2012

Gilbane to provide CM services for North Reading’s integrated middle/high school

The project scope includes a wastewater treatment plant, demolition of the existing high school and extensive athletic fieldwork.

| May 2, 2012

Public housing can incorporate sustainable design

Sustainable design achievable without having to add significant cost; owner and residents reap benefits

| May 1, 2012

White paper discusses benefits of diaphragm and piston flushometer valves

The white paper highlights considerations that impact which type of technology is most appropriate for various restroom environments.

| Apr 30, 2012

Virginia Commonwealth unveils design for Arts Institution

Institute for Contemporary Art will serve as a catalyst for exhibitions, programs, research and collaboration.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021