flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Report: HVAC occupancy sensors could slash building energy demand by 18%

Report: HVAC occupancy sensors could slash building energy demand by 18%

Researchers at the DOE's Pacific Northwest National Laboratory conclude that significant energy savings can be achieved by varying ventilation levels based on the number of people in a given space.


By Pacific Northwest National Laboratory | June 18, 2013
A single advanced building control now in development could slash 18 percent — tens of thousands of dollars — off the overall annual energy bill of the average large office building, with no loss of comfort, according to a report by researchers at the Department of Energy's Pacific Northwest National Laboratory.
 
"An 18-percent boost in building energy efficiency by modifying a single factor is very, very good," said team leader Michael Brambley. "The savings were much greater than we expected."
 
The report is based on extensive simulations of the impact of one type of advanced building control now in the offing in the building industry. The device is capable of customizing the level of ventilation by sensing the number of people in different areas or zones of a building and then adjusting fan speed and air movement accordingly.
 
That's a big change from the way most sensor-based ventilation systems operate now: Currently, if there is even a single person in a room, ventilation runs full blast, as if the room is full.
 
But a room with just a few people doesn't need nearly as much ventilation as a crowded room. Why have a fan pushing around air for ventilation for 100 people if there's only one individual in the room? It's like airing out your house completely because there's one small whiff of bacon still in the kitchen.
 
"This is the reason you often feel cold when you're in a big space like a conference room or cafeteria without a lot of people," said engineer Guopeng Liu, the lead author of the report. "Technology available today doesn't detect how many people are in a room, and so air flow is at maximum capacity nearly constantly. That creates a big demand to re-heat the air before it enters the rooms. It takes a lot of energy to keep you comfortable under those circumstances."
 
Current occupancy sensors have helped the nation save significant amounts of energy by automatically turning off lights when they're not needed. But the team estimates that the more advanced versions still to come — which count the number of people in rooms — will save approximately 28 times as much energy, when used both for lighting and ventilation, compared to current sensors.
 
The project began three years ago when Liu began exploring the idea of adjusting air flow to different zones of a building based on the precise number of people in a room. That "decision" of how much air to move takes place in a piece of equipment known as a variable air volume terminal box. The new sensors that count people are likely to become available within the next few years. While they are currently very expensive, the technology is improving rapidly and the cost is expected to come down, Brambley noted.
 
"We undertook this study to try to determine if this is a technology worth pursuing vigorously. The answer, clearly, is yes. Using the number of people in a room as a factor in determining the level of air flow offers great promise for saving energy and money," said Brambley.
 
To do its study, the team focused on a prototypical large commercial office building whose footprint is 160 feet by 240 feet — about 80 percent the size of a football field. The model building is 12 stories and also has a basement, giving it a total of about 500,000 square feet. Such buildings in the United States take up more than 4.4 billion square feet. To visualize the size, think of the land area covered by Seattle — and a little bit of its suburbs — as a giant one-story building.
 
Brambley's team programmed the simulation to heat a building if temperatures dipped below 70 degrees Fahrenheit and to provide cooling at temperatures beginning at 75 degrees. Numbers were set back 10 degrees on the evenings and weekends. Occupancy patterns were estimated based on past studies.
 
In 13 of the nation's 15 climate regions, the PNNL team estimates that the advanced controls would save at least $40,000 annually for each building similar in size to the one modeled in the study. In two cities, Baltimore and Fairbanks, the savings stretch to more than $100,000 each year, because of the greatly reduced need to heat new air being pumped in from the cold outdoors. Even in the two cities where the savings would be the least, El Paso and Miami, estimated savings come to $33,400 and $23,500, respectively.
 
"While buildings have gotten much more efficient in the last two decades, there are still huge gains to be had," noted Brambley.
 
Since just a small percentage of office buildings in any given year are newly built, Brambley and Liu say a prime target for these advanced controls is retrofitting existing buildings. Liu notes that technology has leaped forward since 1989 — the year the average large office building was built - offering huge energy gains even with the expense of retrofitting.
 
Since heating and cooling and related equipment usually draw much more energy than lighting, those systems offer a greater opportunity for savings. The team found that advanced controls for ventilation offer about eight times as much savings as advanced controls for lighting, where lights are turned off more quickly than is now common after everyone leaves a room. When the HVAC (heating, ventilation, and air conditioning) system alone is considered, the advanced controls cut energy usage by nearly 40 percent.
 
A stumbling block to the new technology is that certain advanced controls might require modification to some building codes. For instance, current codes require some ventilation at all times no matter how many people are present. Brambley thinks the options are worth considering, given the energy savings at stake.
 
In addition to Brambley and Liu, mechanical engineer Jian Zhang and engineer Robert Lutes contributed to the project. The work was support by DOE's Office of Energy Efficiency and Renewable Energy.

Related Stories

| Feb 11, 2011

RS Means Cost Comparison Chart: Office Buildings

This month's RS Means Cost Comparison Chart focuses on office building construction.

| Feb 11, 2011

Sustainable features on the bill for dual-building performing arts center at Soka University of America

The $73 million Soka University of America’s new performing arts center and academic complex recently opened on the school’s Aliso Viejo, Calif., campus. McCarthy Building Companies and Zimmer Gunsul Frasca Architects collaborated on the two-building project. One is a three-story, 47,836-sf facility with a grand reception lobby, a 1,200-seat auditorium, and supports spaces. The other is a four-story, 48,974-sf facility with 11 classrooms, 29 faculty offices, a 150-seat black box theater, rehearsal/dance studio, and support spaces. The project, which has a green roof, solar panels, operable windows, and sun-shading devices, is going for LEED Silver.

| Feb 11, 2011

BIM-enabled Texas church complex can broadcast services in high-def

After two years of design and construction, members of the Gateway Church in Southland, Texas, were able to attend services in their new 4,000-seat facility in late 2010. Located on a 180-acre site, the 205,000-sf complex has six auditoriums, including a massive 200,000-sf Worship Center, complete with catwalks, top-end audio and video system, and high-definition broadcast capabilities. BIM played a significant role in the building’s design and construction. Balfour Beatty Construction and Beck Architecture formed the nucleus of the Building Team.

| Feb 11, 2011

Kentucky’s first green adaptive reuse project earns Platinum

(FER) studio, Inglewood, Calif., converted a 115-year-old former dry goods store in Louisville, Ky., into a 10,175-sf mixed-use commercial building earned LEED Platinum and holds the distinction of being the state’s first adaptive reuse project to earn any LEED rating. The facility, located in the East Market District, houses a gallery, event space, offices, conference space, and a restaurant. Sustainable elements that helped the building reach its top LEED rating include xeriscaping, a green roof, rainwater collection and reuse, 12 geothermal wells, 81 solar panels, a 1,100-gallon ice storage system (off-grid energy efficiency is 68%) and the reuse and recycling of construction materials. Local firm Peters Construction served as GC.

| Feb 11, 2011

Former Richardson Romanesque hotel now houses books, not beds

The Piqua (Ohio) Public Library was once a late 19th-century hotel that sat vacant and deteriorating for years before a $12.3 million adaptive reuse project revitalized the 1891 building. The design team of PSA-Dewberry, MKC Associates, and historic preservation specialist Jeff Wray Associates collaborated on the restoration of the 80,000-sf Richardson Romanesque building, once known as the Fort Piqua Hotel. The team restored a mezzanine above the lobby and repaired historic windows, skylight, massive fireplace, and other historic details. The basement, with its low ceiling and stacked stone walls, was turned into a castle-like children’s center. The Piqua Historical Museum is also located within the building.

| Feb 11, 2011

Justice center on Fall River harbor serves up daylight, sustainable elements, including eucalyptus millwork

Located on historic South Main Street in Fall River, Mass., the Fall River Justice Center opened last fall to serve as the city’s Superior and District Courts building. The $85 million facility was designed by Boston-based Finegold Alexander + Associates Inc., with Dimeo Construction as CM and Arup as MEP. The 154,000-sf courthouse contains nine courtrooms, a law library, and a detention area. Most of the floors have the same ceiling height, which will makes them easier to reconfigure in the future as space needs change. Designed to achieve LEED Silver, the facility’s elliptical design offers abundant natural daylight and views of the harbor. Renewable eucalyptus millwork is one of the sustainable features.

| Feb 11, 2011

Research facility separates but also connects lab spaces

California State University, Northridge, consolidated its graduate and undergraduate biology and mathematics programs into one 90,000-sf research facility. Architect of record Cannon Design worked on the new Chaparral Hall, creating a four-story facility with two distinct spaces that separate research and teaching areas; these are linked by faculty offices to create collaborative spaces. The building houses wet research, teaching, and computational research labs, a 5,000-sf vivarium, classrooms, and administrative offices. A four-story outdoor lobby and plaza and an outdoor staircase provide orientation. A covered walkway links the new facility with the existing science complex. Saiful/Bouquet served as structural engineer, Bard, Rao + Athanas Consulting Engineers served as MEP, and Research Facilities Design was laboratory consultant.

| Feb 11, 2011

A feast of dining options at University of Colorado community center, but hold the buffalo stew

The University of Colorado, Boulder, cooked up something different with its new $84.4 million Center for Community building, whose 900-seat foodservice area consists of 12 micro-restaurants, each with its own food options and décor. Centerbrook Architects of Connecticut collaborated with Denver’s Davis Partnership Architects and foodservice designer Baker Group of Grand Rapids, Mich., on the 323,000-sf facility, which also includes space for a career center, international education, and counseling and psychological services. Exterior walls of rough-hewn, variegated sandstone and a terra cotta roof help the new facility blend with existing campus buildings. Target: LEED Gold.

| Feb 11, 2011

Chicago high-rise mixes condos with classrooms for Art Institute students

The Legacy at Millennium Park is a 72-story, mixed-use complex that rises high above Chicago’s Michigan Avenue. The glass tower, designed by Solomon Cordwell Buenz, is mostly residential, but also includes 41,000 sf of classroom space for the School of the Art Institute of Chicago and another 7,400 sf of retail space. The building’s 355 one-, two-, three-, and four-bedroom condominiums range from 875 sf to 9,300 sf, and there are seven levels of parking. Sky patios on the 15th, 42nd, and 60th floors give owners outdoor access and views of Lake Michigan.

| Feb 11, 2011

Iowa surgery center addresses both inpatient and outpatient care

The 12,000-person community of Carroll, Iowa, has a new $28 million surgery center to provide both inpatient and outpatient care. Minneapolis-based healthcare design firm Horty Elving headed up the four-story, 120,000-sf project for St. Anthony’s Regional Hospital. The center’s layout is based on a circular process flow, and includes four 800-sf operating rooms with poured rubber floors to reduce leg fatigue for surgeons and support staff, two substerile rooms between each pair of operating rooms, and two endoscopy rooms adjacent to the outpatient prep and recovery rooms. Recovery rooms are clustered in groups of four. The large family lounge (left) has expansive windows with views of the countryside, and television monitors that display coded information on patient status so loved ones can follow a patient’s progress.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021