flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Report: HVAC occupancy sensors could slash building energy demand by 18%

Report: HVAC occupancy sensors could slash building energy demand by 18%

Researchers at the DOE's Pacific Northwest National Laboratory conclude that significant energy savings can be achieved by varying ventilation levels based on the number of people in a given space.


By Pacific Northwest National Laboratory | June 18, 2013
A single advanced building control now in development could slash 18 percent — tens of thousands of dollars — off the overall annual energy bill of the average large office building, with no loss of comfort, according to a report by researchers at the Department of Energy's Pacific Northwest National Laboratory.
 
"An 18-percent boost in building energy efficiency by modifying a single factor is very, very good," said team leader Michael Brambley. "The savings were much greater than we expected."
 
The report is based on extensive simulations of the impact of one type of advanced building control now in the offing in the building industry. The device is capable of customizing the level of ventilation by sensing the number of people in different areas or zones of a building and then adjusting fan speed and air movement accordingly.
 
That's a big change from the way most sensor-based ventilation systems operate now: Currently, if there is even a single person in a room, ventilation runs full blast, as if the room is full.
 
But a room with just a few people doesn't need nearly as much ventilation as a crowded room. Why have a fan pushing around air for ventilation for 100 people if there's only one individual in the room? It's like airing out your house completely because there's one small whiff of bacon still in the kitchen.
 
"This is the reason you often feel cold when you're in a big space like a conference room or cafeteria without a lot of people," said engineer Guopeng Liu, the lead author of the report. "Technology available today doesn't detect how many people are in a room, and so air flow is at maximum capacity nearly constantly. That creates a big demand to re-heat the air before it enters the rooms. It takes a lot of energy to keep you comfortable under those circumstances."
 
Current occupancy sensors have helped the nation save significant amounts of energy by automatically turning off lights when they're not needed. But the team estimates that the more advanced versions still to come — which count the number of people in rooms — will save approximately 28 times as much energy, when used both for lighting and ventilation, compared to current sensors.
 
The project began three years ago when Liu began exploring the idea of adjusting air flow to different zones of a building based on the precise number of people in a room. That "decision" of how much air to move takes place in a piece of equipment known as a variable air volume terminal box. The new sensors that count people are likely to become available within the next few years. While they are currently very expensive, the technology is improving rapidly and the cost is expected to come down, Brambley noted.
 
"We undertook this study to try to determine if this is a technology worth pursuing vigorously. The answer, clearly, is yes. Using the number of people in a room as a factor in determining the level of air flow offers great promise for saving energy and money," said Brambley.
 
To do its study, the team focused on a prototypical large commercial office building whose footprint is 160 feet by 240 feet — about 80 percent the size of a football field. The model building is 12 stories and also has a basement, giving it a total of about 500,000 square feet. Such buildings in the United States take up more than 4.4 billion square feet. To visualize the size, think of the land area covered by Seattle — and a little bit of its suburbs — as a giant one-story building.
 
Brambley's team programmed the simulation to heat a building if temperatures dipped below 70 degrees Fahrenheit and to provide cooling at temperatures beginning at 75 degrees. Numbers were set back 10 degrees on the evenings and weekends. Occupancy patterns were estimated based on past studies.
 
In 13 of the nation's 15 climate regions, the PNNL team estimates that the advanced controls would save at least $40,000 annually for each building similar in size to the one modeled in the study. In two cities, Baltimore and Fairbanks, the savings stretch to more than $100,000 each year, because of the greatly reduced need to heat new air being pumped in from the cold outdoors. Even in the two cities where the savings would be the least, El Paso and Miami, estimated savings come to $33,400 and $23,500, respectively.
 
"While buildings have gotten much more efficient in the last two decades, there are still huge gains to be had," noted Brambley.
 
Since just a small percentage of office buildings in any given year are newly built, Brambley and Liu say a prime target for these advanced controls is retrofitting existing buildings. Liu notes that technology has leaped forward since 1989 — the year the average large office building was built - offering huge energy gains even with the expense of retrofitting.
 
Since heating and cooling and related equipment usually draw much more energy than lighting, those systems offer a greater opportunity for savings. The team found that advanced controls for ventilation offer about eight times as much savings as advanced controls for lighting, where lights are turned off more quickly than is now common after everyone leaves a room. When the HVAC (heating, ventilation, and air conditioning) system alone is considered, the advanced controls cut energy usage by nearly 40 percent.
 
A stumbling block to the new technology is that certain advanced controls might require modification to some building codes. For instance, current codes require some ventilation at all times no matter how many people are present. Brambley thinks the options are worth considering, given the energy savings at stake.
 
In addition to Brambley and Liu, mechanical engineer Jian Zhang and engineer Robert Lutes contributed to the project. The work was support by DOE's Office of Energy Efficiency and Renewable Energy.

Related Stories

| Mar 11, 2011

Renovation energizes retirement community in Massachusetts

The 12-year-old Edgewood Retirement Community in Andover, Mass., underwent a major 40,000-sf expansion and renovation that added 60 patient care beds in the long-term care unit, a new 17,000-sf, 40-bed cognitive impairment unit, and an 80-seat informal dining bistro.

| Mar 11, 2011

Research facility added to Texas Medical Center

Situated on the Texas Medical Center’s North Campus in Houston, the new Methodist Hospital Research Institute is a 12-story, 440,000-sf facility dedicated to translational research. Designed by New York City-based Kohn Pedersen Fox, with healthcare, science, and technology firm WHR Architects, Houston, the building has open, flexible labs, offices, and amenities for use by 90 principal investigators and 800 post-doc trainees and staff.

| Mar 11, 2011

Blockbuster remodel transforms Omaha video store into a bank

A former Hollywood Video store in Omaha, Neb., was renovated and repurposed as the SAC Federal Credit Union, Ames Branch. Architects at Leo A Daly transformed the outdated 5,000-sf retail space into a modern facility by wrapping the exterior in poplar siding and adding a new glass storefront that floods the interior with natural light.

| Mar 11, 2011

Historic McKim Mead White facility restored at Columbia University

Faculty House, a 1923 McKim Mead White building on Columbia University’s East Campus, could no longer support the school’s needs, so the historic 38,000-sf building was transformed into a modern faculty dining room, graduate student meeting center, and event space for visiting lecturers, large banquets, and alumni organizations.

| Mar 11, 2011

Mixed-income retirement community in Maryland based on holistic care

The Green House Residences at Stadium Place in Waverly, Md., is a five-story, 40,600-sf, mixed-income retirement community based on a holistic continuum of care concept developed by Dr. Bill Thomas. Each of the four residential floors houses a self-contained home for 12 residents that includes 12 bedrooms/baths organized around a common living/social area called the “hearth,” which includes a kitchen, living room with fireplace, and dining area.

| Mar 11, 2011

Oregon childhood center designed at child-friendly scale

Design of the Early Childhood Center at Mt. Hood Community College in Gresham, Ore., focused on a achieving a child-friendly scale and providing outdoor learning environments.

| Mar 11, 2011

Guests can check out hotel’s urban loft design, music selection

MODO, Advaya Hospitality’s affordable new lifestyle hotel brand, will have an urban Bauhaus loft design and target design-, music-, and tech-savvy guest who will have access to thousands of tracks in vinyl, CD, and MP3 formats through a partnership with Downtown Music. Guest can create their own playlists, and each guest room will feature iPod docks and large flat-screen TVs.

| Mar 11, 2011

Construction of helicopter hangars in South Carolina gets off the ground

Construction is under way on a $26 million aviation support facility for South Carolina National Guard helicopters. Hendrick Construction, the project’s Charlotte, N.C.-based GC, is building the 111,000-sf Donaldson Hangar facility on the 30-acre South Carolina Technology & Aviation Center, Greenville.

| Mar 11, 2011

Texas A&M mixed-use community will focus on green living

HOK, Realty Appreciation, and Texas A&M University are working on the Urban Living Laboratory, a 1.2-million-sf mixed-use project owned by the university. The five-phase, live-work-play project will include offices, retail, multifamily apartments, and two hotels.

| Mar 11, 2011

Chicago office building will serve tenants and historic church

The Alter Group is partnering with White Oak Realty Partners to develop a 490,000-sf high-performance office building in Chicago’s West Loop. The tower will be located on land owned by Old St. Patrick’s Church (a neighborhood landmark that survived the Chicago Fire of 1871) that’s currently being used as a parking lot.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021