flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Purdue, industry partners test light steel framing for seismic safety

Purdue, industry partners test light steel framing for seismic safety

Reasearch will conclude with shake table testing of structural and non-structural components.


By Purdue University | June 14, 2013
A view of the two-story test building. Photo: Kara Peterman
A view of the two-story test building. The completed structure is armored with 23,000 pounds of 1/2-inch steel plate. Photo: Kara Peterman

WEST LAFAYETTE, Ind. - A partnership of leading earthquake engineering researchers from top U.S. and Canadian universities and design professionals from the steel industry have begun the final phase of a three-year project to increase the seismic safety of buildings that use lightweight cold-formed steel for their primary beams and columns. 

Funded by a grant from the George E. Brown, Jr. Network for Earthquake Engineering Simulation Network (NEES), the researchers have already developed a series of computational models to determine how a complete building structure will perform during an earthquake. 

Headquartered at Purdue's Discovery Park, NEES is a collaborative, 14-site research initiative that aims to improve structural seismic design and reduce the damaging effects of earthquakes and tsunamis. NEES is funded by a $105 million National Science Foundation grant. NEEScomm is the operations unit at Purdue. 

The initial stage in the testing involved the construction of a two-story structure and then testing on a "shake table" at the University of Buffalo. The building will undergo the rigors of a controlled earthquake to determine how it performs. There will be two phases to the shake table testing: Phase One is taking place June 12-14 and will test only the structural components, which include the cold-formed steel skeleton and the OSB (oriented strand board) sheathing for the floor diaphragm and roof; Phase Two will add non-structural components like stairs, gypsum sheathing and interior partitions. The objective is to advance cold-formed steel light-frame design in buildings to the next level and equip engineers to implement these performance-based seismic designs in their projects. 

The data from the research is published on NEEShub, the cyberinfrastructure component of the NEES network. The NEEShub platform is powered by Purdue's HUBzero software. 

The research team is led by Benjamin Schafer of the Department of Civil Engineering at Johns Hopkins University and a longtime member of two standards-developing committees of the American Iron and Steel Institute (AISI) - the Committee on Specifications and the Committee on Framing Standards. Schafer's team includes additional researchers from Johns Hopkins and Bucknell University, with input from colleagues at the University of North Texas, Virginia Tech and McGill University in Montreal, Canada. 

Several steel industry partners are participating in the project, providing technical expertise, donated materials and additional funding. The steel industry partners include the American Iron and Steel Institute, Bentley Systems Inc., ClarkDietrich Building Systems, Devco Engineering Inc., DSi Engineering, Mader Construction Co. Inc., Simpson Strong-Tie Co. Inc., the Steel Framing Industry Association, and the Steel Stud Manufacturers Association. 

"We appreciate the valuable technical and economic input that our industry partners have provided," said Schafer, the project's principal investigator. 

"This project has already resulted in several innovations that will immediately impact seismic cold-formed steel design standards, making buildings safer," Schafer said. "Now comes the fun part - getting to see how all the research plays out on the shake table. One of the important deliverables from this project will be the transfer of our research results into an open-source software framework. The data will then be made available to engineers, allowing them to see how their structural system designs will respond to an earthquake before they are constructed. This software will create cost efficiencies and potentially save lives."

In fact, project data is already on NEEShub. Preliminary testing conducted on building components (shear walls in particular) have been posted for engineers to examine. Initial uploading of the test data happens immediately after the tests. Fully curated data will happen over the course of this summer. 

Schafer said Johns Hopkins graduate student Kara Peterman is on site at the University of Buffalo Structural Engineering and Earthquake Simulation Laboratory (SEESL) and is providing updates on the structure's construction and blog entries at the CFS NEES blog.

Project Background

The award is an outcome of the National Science Foundation 09-524 program solicitation for the George E. Brown, Jr. Network for Earthquake Engineering Simulation Research competition. The title of the project is "NEES-CR: Enabling Performance-Based Seismic Design of Multi-Story Cold-Formed Steel Structures," award number 1041578. 

The analysis and initial testing for the project began in late 2010 and took place at John Hopkins University and the University of North Texas. The focus has now moved to the University of Buffalo, where construction of the two-story test building was recently completed. Full-scale shake-table testing is expected to take place in the summer.

About the George E. Brown, Jr. Network for Earthquake Engineering Simulation Network (NEES) at Purdue

Since Oct. 1, 2009, the NEES operations and cyberinfrastructure headquarters has been at Purdue University's Discovery Park, the result of National Science Foundation cooperative agreement #CMMI-0927178. The 14 participating universities hosting NEES laboratories include Cornell University; Lehigh University; Oregon State University; Rensselaer Polytechnic Institute; University at Buffalo, SUNY; University of California, Berkeley; University of California, Davis; University of California, Los Angeles; University of California San Diego; University of California Santa Barbara; University of Illinois, Urbana-Champaign; University of Minnesota; University of Nevada, Reno; and University of Texas, Austin. In addition, 5 institutions involved as administrative partners include: San Jose State University, University of Washington, University of Kansas, University of South Carolina, and the Fermi National Laboratory.

Related Stories

Museums | Oct 20, 2015

Frank Lloyd Wright’s Bachman Wilson House finds new home at Arkansas museum

Crystal Bridges Museum reconstructed the 61-year-old Usonian house and will open it to the public in November.

Architects | Oct 20, 2015

Four building material innovations from the Chicago Architecture Biennial

From lightweight wooden pallets to the largest lengths of CLT-slabs that can be shipped across North America

University Buildings | Oct 16, 2015

5 ways architecture defines the university brand

People gravitate to brands for many reasons. Campus architecture and landscape are fundamental influences on the college brand, writes Perkins+Will's David Damon.

Architects | Oct 13, 2015

Architects Foundation expands National Resilience Initiative

The group is launching a search for three more NRI members.

Architects | Oct 13, 2015

Santiago Calatrava wins the European Prize for Architecture

The award honors those who "forward the principles of European humanism."

Office Buildings | Oct 5, 2015

Renderings revealed for Apple's second 'spaceship': a curvy, lush office complex in Sunnyvale

The project has been dubbed as another “spaceship,” referencing the nickname for the loop-shaped Apple Campus under construction in Cupertino. 

Airports | Oct 5, 2015

Perkins+Will selected to design Istanbul’s 'Airport City'

The mixed-use development will be adjacent to the Istanbul New Airport, which is currently under construction.

High-rise Construction | Oct 5, 2015

Zaha Hadid designs cylindrical office building with world’s tallest atrium

The 200-meter-high open space will cut the building in two.

Architects | Oct 2, 2015

Herzog & de Meuron unveils design for Vancouver Art Gallery expansion

The blocky, seven-story wood and concrete structure is wider in the middle and uppermost floors.  

Airports | Sep 30, 2015

Takeoff! 5 ways high-flyin' airports are designing for rapid growth

Nimble designs, and technology that humanizes the passenger experience, are letting airports concentrate on providing service and generating revenue.

boombox1
boombox2
native1

More In Category

Warehouses

California bill would limit where distribution centers can be built

A bill that passed the California legislature would limit where distribution centers can be located and impose other rules aimed at reducing air pollution and traffic. Assembly Bill 98 would tighten building standards for new warehouses and ban heavy diesel truck traffic next to sensitive sites including homes, schools, parks and nursing homes.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021