flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Purdue engineers develop intelligent architected materials

Building Materials

Purdue engineers develop intelligent architected materials

Purdue University researchers are testing the new adaptable materials for transportation, structural, and other real-world applications.


By Quinn Purcell, Managing Editor | October 2, 2023
Engineering Fountain Purdue University
Engineering Fountain Purdue University

Purdue University civil engineers have developed innovative materials that can dissipate energy caused by bending, compression, torque, and tensile stresses without sustaining permanent damage. These intelligent architected materials may also possess shape memory properties, making them reusable while enhancing safety and durability.

The research, led by Professor Pablo Zavattieri, believe the new class of adaptable materials offer potential uses in multiple industries, such as earthquake engineering, impact-resistant structures, biomedical devices, sporting goods, building construction, and automotive components. The technology is currently being tested for 3D-printed panels for aircraft runway mats and nonpneumatic tires for military vehicles, providing resistance to punctures and leaks while maintaining performance in various terrains.

Purdue develops intelligent architected materials
 

Purdue University intelligent architected materials
Products made with intelligent architected materials developed at Purdue University have the ability to change from one stable configuration to another stable configuration and back again. Courtesy Purdue University

“These materials are designed for fully recoverable, energy-dissipating structures, akin to what is referred to as architected shape memory materials, or phase transforming cellular materials, known as PXCM,” Zavattieri said. “They can also exhibit intelligent responses to external forces, changes in temperature, and other external stimuli.”

These materials can be created from various substances, such as polymers, rubber, and concrete, as long as they remain within the elastic range. They are designed to deform in controlled and programmable ways, providing enhanced energy absorption and adaptability. For the aircraft runway mats, Zavattieri sees the material aiding in self-healing properties, resulting in a longer life span than a runway made with AM-2 matting. "Another benefit is that debris on the runway will not hamper the runway’s performance with our technology," he says.

The Purdue researchers have demonstrated scalability from macro to micro applications and an improvement over traditional lightweight cellular materials.

Purdue University developed aircraft runway mat
Pablo Zavattieri, the Jerry M. and Lynda T. Engelhardt Professor in Civil Engineering, lifts an aircraft runway mat made with new intelligent architected materials developed at Purdue University. In testing, the mats were capable of withstanding over 5,000 landing and takeoff cycles over a 60-day period while showing no signs of failure. Courtesy Purdue University

“We have produced intelligent architected materials as large as 12 inches, which are ideal for applications like building and bridge construction to absorb and harness energy,” Zavattieri said. “Conversely, we have created materials with unit cells smaller than the thickness of a human hair. This scalability opens up a world of possibilities from macro to micro applications.”

The research has received funding from organizations like General Motors, ITAMCO (Indiana Technology and Manufacturing Companies), the National Science Foundation, and the U.S. Air Force. Additionally, patents have been filed to protect the intellectual property, and industry partners interested in commercializing the materials for the marketplace should contact Dipak Narula, Assistant Director of Business Development and Licensing in Physical Sciences, at dnarula@prf.org about 2018-ZAVA-68252, 2019-ZAVA-68691, 2020-ZAVA-69072 and 2022-ZAVA-69900.

Related Stories

| Apr 25, 2012

J.C. Anderson selected for 50,000-sf build out at Chicago’s DePaul University

The build-out will consist of the construction of new offices, meeting rooms, video rooms and a state-of-the-art multi-tiered Trading Room.

| Apr 24, 2012

McLennan named Ashoka Fellow

McLennan was recognized for his work on the Living Building Challenge.

| Apr 24, 2012

AECOM design and engineering team realizes NASA vision for Sustainability Base

LEED Platinum facility opens at NASA Ames Research Center at California’s Moffett Field.

| Apr 23, 2012

Vegas’ CityCenter called financial ‘black hole’

Two and a half years ago, stockholders filed six lawsuits after the stock price fell from $99.75 on Oct. 9, 2007, to $1.89 on March 5, 2009. Bondholders sued over similar steep losses.

| Apr 23, 2012

Innovative engineering behind BIG’s Vancouver Tower

Buro Happold’s structural design supports the top-heavy, complex building in a high seismic zone; engineers are using BIM technology to design a concrete structure with post-tensioned walls.

| Apr 23, 2012

AAMA releases updated specification for anodized aluminum

AAMA 611-12 describes test procedures and requirements for high performance (Class I) and commercial (Class II) architectural quality aluminum oxide coatings applied to aluminum extrusions and panels for architectural products.

| Apr 23, 2012

Thornton Tomasetti project wins AISC Merit Award

Thornton Tomasetti provided structural design services through construction administration to architect HOK for the 1.6-million-sf tower and tiara structure, which comprises 15 steel tube arches spanning approximately 158 feet horizontally and 130 feet vertically from the top of the main building roof.

| Apr 20, 2012

McCarthy completes Santa Barbara Cottage Hospital Replacement Facility

The new hospital’s architectural design combines traditional Santa Barbara Spanish colonial architecture with 21st century medical conveniences highlighted by a therapeutic and sustainable atmosphere.

| Apr 20, 2012

Century-old courthouse renovated for Delaware law firm offices

To account for future expansion, Francis Cauffman developed a plan to accommodate the addition of an 8-story tower to the building.

| Apr 20, 2012

Shawmut completes Yard House Restaurant in Boston

12,000-sf restaurant marks new addition to Boston’s Fenway neighborhood.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021