flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Purdue engineers develop intelligent architected materials

Building Materials

Purdue engineers develop intelligent architected materials

Purdue University researchers are testing the new adaptable materials for transportation, structural, and other real-world applications.


By Quinn Purcell, Managing Editor | October 2, 2023
Engineering Fountain Purdue University
Engineering Fountain Purdue University

Purdue University civil engineers have developed innovative materials that can dissipate energy caused by bending, compression, torque, and tensile stresses without sustaining permanent damage. These intelligent architected materials may also possess shape memory properties, making them reusable while enhancing safety and durability.

The research, led by Professor Pablo Zavattieri, believe the new class of adaptable materials offer potential uses in multiple industries, such as earthquake engineering, impact-resistant structures, biomedical devices, sporting goods, building construction, and automotive components. The technology is currently being tested for 3D-printed panels for aircraft runway mats and nonpneumatic tires for military vehicles, providing resistance to punctures and leaks while maintaining performance in various terrains.

Purdue develops intelligent architected materials
 

Purdue University intelligent architected materials
Products made with intelligent architected materials developed at Purdue University have the ability to change from one stable configuration to another stable configuration and back again. Courtesy Purdue University

“These materials are designed for fully recoverable, energy-dissipating structures, akin to what is referred to as architected shape memory materials, or phase transforming cellular materials, known as PXCM,” Zavattieri said. “They can also exhibit intelligent responses to external forces, changes in temperature, and other external stimuli.”

These materials can be created from various substances, such as polymers, rubber, and concrete, as long as they remain within the elastic range. They are designed to deform in controlled and programmable ways, providing enhanced energy absorption and adaptability. For the aircraft runway mats, Zavattieri sees the material aiding in self-healing properties, resulting in a longer life span than a runway made with AM-2 matting. "Another benefit is that debris on the runway will not hamper the runway’s performance with our technology," he says.

The Purdue researchers have demonstrated scalability from macro to micro applications and an improvement over traditional lightweight cellular materials.

Purdue University developed aircraft runway mat
Pablo Zavattieri, the Jerry M. and Lynda T. Engelhardt Professor in Civil Engineering, lifts an aircraft runway mat made with new intelligent architected materials developed at Purdue University. In testing, the mats were capable of withstanding over 5,000 landing and takeoff cycles over a 60-day period while showing no signs of failure. Courtesy Purdue University

“We have produced intelligent architected materials as large as 12 inches, which are ideal for applications like building and bridge construction to absorb and harness energy,” Zavattieri said. “Conversely, we have created materials with unit cells smaller than the thickness of a human hair. This scalability opens up a world of possibilities from macro to micro applications.”

The research has received funding from organizations like General Motors, ITAMCO (Indiana Technology and Manufacturing Companies), the National Science Foundation, and the U.S. Air Force. Additionally, patents have been filed to protect the intellectual property, and industry partners interested in commercializing the materials for the marketplace should contact Dipak Narula, Assistant Director of Business Development and Licensing in Physical Sciences, at dnarula@prf.org about 2018-ZAVA-68252, 2019-ZAVA-68691, 2020-ZAVA-69072 and 2022-ZAVA-69900.

Related Stories

| Dec 28, 2014

New trends in ceiling designs and materials [AIA course]

A broad array of new and improved ceiling products offers designers everything from superior acoustics and closed-loop, recycled content to eased integration with lighting systems, HVAC diffusers, fire sprinkler heads, and other overhead problems. This course describes how Building Teams are exploring ways to go beyond the treatment of ceilings as white, monolithic planes.

| Oct 30, 2014

CannonDesign releases guide for specifying flooring in healthcare settings

The new report, "Flooring Applications in Healthcare Settings," compares and contrasts different flooring types in the context of parameters such as health and safety impact, design and operational issues, environmental considerations, economics, and product options.

| Oct 16, 2014

Perkins+Will white paper examines alternatives to flame retardant building materials

The white paper includes a list of 193 flame retardants, including 29 discovered in building and household products, 50 found in the indoor environment, and 33 in human blood, milk, and tissues.

| Oct 14, 2014

Proven 6-step approach to treating historic windows

This course provides step-by-step prescriptive advice to architects, engineers, and contractors on when it makes sense to repair or rehabilitate existing windows, and when they should advise their building owner clients to consider replacement. 

| Sep 25, 2014

Arup's Solarleaf façade system wins Zumtobel innovation award

The system uses the bio-chemical process of photosynthesis to absorb CO2 emissions, while cultivating microalgae to generate biomass and heat as renewable energy resources.

Sponsored | | Sep 15, 2014

Fire resistance of metal cladding is an asset in wildfire-prone areas

Construction projects in fire-prone areas need to take wildfire danger into account, and metal panels provide some fire-resistant qualities.

| Sep 5, 2014

Tyco SimplexGrinnell receives Internet of Things Innovator of the Year Award

The award recognizes the company for excellence in leveraging advanced Internet-connected technology to deliver smart eService fire alarm solutions that improve service delivery and provide significant value to customers.

| Aug 21, 2014

Firestone Building Products' Bristol facility chosen as Northeast business leader for energy efficiency

Firestone Building Products Company, LLC announced that its Bristol, Conn. manufacturing facility was recognized by the Northeast Energy Efficiency Partnerships (NEEP) as a 2014 Northeast Business Leader for Energy Efficiency. 

| Aug 5, 2014

New bomb-proof concrete mixture used in One World Trade Center

The new concrete mix deforms instead of breaking, removing the threat of flying debris in an explosive attack. 

| Aug 1, 2014

Johns Manville realigning Engineered Products into global business unit

New structure of Johns Manville Engineered Products unit expected to enhance customer experiences while strengthening innovation, agility, and manufacturing capabilities.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021