flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Prefab Trailblazer

Prefab Trailblazer

If prefabrication can work in a complex, 12-story hospital project, where else might it work?


By By Peter Fabris, Contributing Editor; Photo: Š Sean Airhart/NBBJ | October 13, 2010
This article first appeared in the October 2010 issue of BD+C.

The Miami Valley Hospital cardiac center, currently nearing completion in Dayton, Ohio, is a 500,000-sf, 12-story addition that will provide state-of-the-art diagnostic and treatment services to the region. When it opens in a few months, the $137 million facility arguably will become the first major hospital project in the U.S. to have made extensive use of prefabricated components in its design and construction.

At Miami Valley, prefabrication yielded higher quality construction, a safer work environment, and a faster construction schedule. This project raises the prospect that if prefabrication can be used successfully in a complex hospital project, it may also be a sound methodology for constructing affordable multifamily housing, college and K-12 classroom buildings, university residence halls, medical offices buildings, laboratories, hotels, senior living facilities, and other building types with numerous repetitive components.

At Miami Valley, five key component types were constructed and assembled off site:

• Patient room toilets, casework, and headwalls

• Integrated MEP racks above corridors

• Modular workstations for staff

• Unitized curtain wall sections

• A temporary pedestrian footbridge

The design firm, NBBJ, and construction manager, Skanska USA Building, are enthusiastic about applying what they’ve learned about prefab in Dayton to future projects.

Rules of Engagement for Prefab Construction

Modular prefabrication makes sense when the project has a sufficient number of repetitive elements—for example, 178 patient rooms, as in the Miami Valley project. According to Building Team members on that job, once that baseline is set, several best practices should kick in:

1. Prefab must serve the design, not vice versa.

2. Engage key subcontractors and suppliers early in the design process.

3. Use BIM—without it, it’s almost impossible do prefab right.

4. Build a mockup, and test it on occupants and end-users.

5. Employ just-in-time delivery of modules to keep the job site free of clutter.

6. Make sure your modules can be delivered on conventional flatbed trucks or the equivalent. A miscalculation here could prove embarrassingly expensive.

Setting the stage for prefab

Three years ago, when the Miami Valley project was in preliminary design, NBBJ and Skanska independently were looking at how to ramp up use of prefab elements in building construction. NBBJ principals had just attended a seminar by James Timberlake, FAIA, founding partner of the Philadelphia architecture firm KieranTimberlake, examining how manufacturing approaches might transform building construction. The author of refabricating Architecture lit a fire under NBBJ staffers.

Around the same time, interest in prefab was percolating at Skanska. The construction management firm already had a couple of prefab-intensive hospital projects under way in the United Kingdom, and Skanska managers here were eager to try it on this side of the pond.

At an early process design charrette with the owner, Tim Fishking, AIA, NBBJ’s principal-in-charge, says he and Marty Corrado, Skanska’s project executive on the job, had one of those moments when the proverbial light bulb went on over their heads and prefab seemed to make sense for the project.

However, for Bob Eling, director of strategic construction for Premier Health Partners, the owners of Miami Valley Hospital, prefab represented a radical departure from established construction practices. Only after a tour of Skanska’s prefab hospital projects in London in the fall of 2008 was he reassured that prefab could work in Dayton.

When he took the case for prefab to his management, Eling was pleased to find them open to the idea. “They wanted to know the usual: ‘Are we going to get the job done, and how much will it cost?’” he recalls. His main selling point: trust. “We had worked with Skanska on another job, and we had faith in them

Thinking ‘Prefab’ Leads to High-Flying Bridge Solution

Three buildings had to be demolished to make room for the new addition, which created the need for a temporary bridge to maintain pedestrian circulation between buildings during construction. A conventional bridge would have cost $2.1 million and taken several months to build. Instead, the Building Team came up with a unique solution: have an airport jetway vendor build it. JBT AeroTech built the bridge in five sections using an off-the-shelf design. Workers on site poured the foundations, set the sections in place, and connected them in just three days, with no disruption to pedestrian traffic. The cost: $980,000.

“We wanted to use part of the bridge for a connection between one building and the parking garage,” said Premier Health Partners’ Bob Eling. But the permanent footbridge had to have glass on both sides, and the jetway had glass on only one side. Retrofitting it would have been more expensive than building one from scratch.

Putting prefab in perspective

NBBJ’s Fishking is quick to point out that prefabrication did not rule the design process. The chief programmatic concerns were to provide high-quality construction and a facility that met the needs of staff and patients. “When we got to a certain point of understanding the function, operation, and aesthetics, we started to look at prefabrication,” he says. “We didn’t develop the components to try to jam them into a prefab box.”

“Prefab must serve the design,” says NBBJ senior associate Ryan Hullinger, the lead designer on the project. Once the design parameters were established, however, it became clear that there would be a number of opportunities for using prefabrication.

As it turned out, the actual design of the modules became largely a function of the means by which they would be transported from the manufacturing plant to the job site. In order to avoid the cost and hassle of securing special permits for oversize loads, it was determined that all components had to fit on a standard flatbed truck. The designers also had to take into account the weight and bulk of the components, so that onsite workers could readily hoist the units and put them in place.

These physical factors led to a decision that may look obvious in retrospect but took some clever thinking at the time: split the bladelike walls dividing patient rooms into three parts—a toilet unit, a headboard, and a casework unit—and use factory-built MEP racks as well.

Manufacturing the components

Once the decision to use prefabricated components was made, NBBJ went searching for suitable off-the-shelf bathroom modules—to no avail. “We couldn’t find anything that met our standard for quality,” says NBBJ’s Hullinger. They had no better luck finding modular MEP racks. The Building Team quickly realized that there was only one way these elements could be made: Skanska and its subcontractors would have to manufacture them themselves.

Skanska rented an old furniture warehouse less than three miles from the hospital as the fabrication plant. Before ramping up the assembly line, workers constructed a bathroom mockup at the warehouse. Nurses and other hospital professionals critiqued the design; as a result of their input, certain fixtures were repositioned to make patient care and maintenance easier.

All components were custom-assembled and constructed using conventional building materials. Tradespersons assembled the patient room “blades”—the room-dividing walls and bathrooms for 178 patient rooms—and the overhead MEP racks. All metal studs, ductwork, conduits, and pipes were ordered to length, reducing waste material almost to nothing. The 8x22-foot MEP racks were built to fit within 16-foot-wide corridors that spanned five patient-room floors.

Exactly how the blades and overhead racks would be lifted and placed in the building was something that the contractor determined after the modular components were built. “We had to figure out how we were going to rig these components and fly them into the building,” Corrado says. “We took them to a truck stop to have them weighed so we would know how much weight we were hanging off of the steel.”

With little room at the construction site to store components, workers employed just-in-time delivery of the modules from the warehouse to the hospital. Crews built a custom dolly to position the blades after they were lifted into the building. Notches were sunk into patient floors exactly where the bathroom modules were placed—an instance where precision was critical.

Another key area for prefabrication was the curtain wall. “Unitizing the curtain wall is not new, but we took the next step by having closer coordination with the curtain wall subcontractor,” Fishking says. NBBJ adopted a design-assist relationship with the fabricator. “This is very different from design-bid-build,” says Hullinger. “Here, the fabricator was brought into the design process and their knowledge of construction techniques was readily available to us. The result was a better design.”

Modular curtain wall construction also greatly increased the speed to getting the building enclosed. “This is especially important on a site where you don’t have a lot of space to store materials,” says Fishking.

BIM Aids Accuracy, Precision, Problem-solving

In any building project that makes extensive use of prefabrication, modular elements have to be largely complete when put in place and must fit precisely into the structure—on-site alterations are a no-no. That’s why competence with BIM has to be pretty much a given for any Building Team using a lot of prefab components. Skanska and subcontractors TP Mechanical, Dalmatian Fire Protection, and Chapel Electric used Autodesk Navisworks to coordinate design and construction of the MEP systems.

According to NBBJ principal-in-charge Tim Fishking, AIA, using BIM not only improved accuracy and precision, it also “greatly enhanced” the team’s ability to solve the design problems associated with the components.

Results vindicate the prefab approach

As the project nears completion, the advantages of the prefab approach—particularly improved construction quality and greater precision—are becoming more and more apparent.

“In conventional construction, no matter how well your design is coordinated, that can slip during field construction,” says NBBJ’s Hullinger. With prefabrication, “You can develop elaborate, well-coordinated 3D models that show the location of every pipe, duct, and beam. Overhead racks look exactly like they were modeled. That’s remarkable.”

Having major subcontractors involved early was essential to making the prefab strategy pay off, says Premier Health’s Eling. Bids were sent out when construction drawings were just 50% complete. The subs’ input led to higher quality prefab components; the resulting accuracy of the models made installation of the MEP racks go smoothly. “We didn’t have to modify one beam pocket out of hundreds of beam pockets,” says Skanska’s Corrado says. “Same with our attachment points.”

The prefabrication process also was a boon to worker productivity. For example, a good day’s output for a plumber working above ceiling level would be about 200 feet of pipe per day. At the warehouse, output was tripled, averaging 600 feet of pipe a day—this for workers who were paid about $40 an hour, compared to $50 an hour for on-site workers.

In fact, the manufacturing process was so efficient that the work on the construction site could not at times keep pace, so Skanska had to rent additional space to store the blades and MEP units until the construction crews were ready for them.

 Prefab also helped accelerate the construction schedule. “You can start your interior rough-in while you’re still doing structure and foundation,” Corrado says. “We were able to do interior rough-in components in February in Ohio in a temperature-controlled warehouse instead of outside on an upper floor with the wind blowing through at zero degrees.”

There were ergonomic benefits as well. Factory workers standing on a level floor with easily accessible tools and materials were at lower risk for muscle strain than if they had had to climb up and down ladders to construct MEP racks above their heads at the job site. There were no shop injuries on the job.

Eling sums up the advantages of prefab in three words: schedule, safety, and quality. Although there were also some cost savings associated with prefabrication—notably more than $1 million on the temporary footbridge—prefabrication didn’t provide a huge overall project cost savings on the $137 million  project, Eling says. Prefabbed components touched only about 11% of total construction costs.

Down the line, however, hidden savings could emerge. “The MEP racks on the five patient floors are identical,” Eling notes. “All of the ductwork, dampers, sprinkler piping, medical gases, and offshoots to patient rooms were constructed identically and positioned the same way on each floor. In the future, maintenance personnel will know exactly where to go to work on them.” The MEP racks also were constructed with extra room to add infrastructure, as needed.

Looking toward the prefab of tomorrow

“Early on, we had many of our people that thought this process was too far-fetched to try on a big hospital project,” Corrado says. Doubts faded once the skeptics were able to tour the manufacturing facility and, later, when installation of prefab components in the building worked as intended, Corrado says.

Skanska management has taken note of the results at Miami Valley. Skanska project teams must now submit a prefabrication plan to their area managers for consideration on all U.S. projects, according to Corrado.

The Miami Valley project proved that prefabrication can work in a complex building setting. In the future, Building Teams would be well advised to investigate how prefabrication might be applied to any structure with repetitive features. The benefits are too compelling to ignore. BD+C

 

What This Building Team Learned about Prefab (and What They Say They’ll Do Better Next Time)

The Miami Valley Hospital project was a prefabrication proving ground for NBBJ and Skanska. Based on what they learned, here’s what project managers from these companies say they would do differently on future projects:

1. Look for more off-the-shelf options.

At the start of the project in 2007, the designers could not find off-the-shelf bathroom modules that met their criteria, but that’s no longer the case, as manufacturers are responding with new and better products. “The market is moving fast, and vendors are trending toward products that we could be pretty excited about on future projects,” says Ryan Hullinger, NBBJ lead designer.

2. Strive for just-in-time production.

Now that Skanska has a good handle on how long it takes to construct prefab modules, scheduling can be better coordinated. “We would do more just-in-time production of the modules so that we could get a much smaller place for the prefab work, which would be cheaper,” says Marty Corrado, Skanska project executive.

3. Prefab modules can be more finished products.

With a better handle on prefab production schedules, modules could be fabricated with a higher degree of finishes. Research labs, exam rooms in medical buildings, kitchenettes, and other spaces could be prefabricated in a more completed state, the Building Team members feel.

4. Apply prefab to more complex components.

At Miami Valley, design of prefabricated MEP racks was kept fairly simple; only straight sections were constructed in the fabrication plant. In the future, Skanska’s Corrado says he would like to take on more complex prefabricated systems, such as intersecting corridor sections. Spaces that are laden with high-tech infrastructure may also be good prefab candidates. “In an operating room that we’re developing now, the ceiling is very technology intensive, so we’re looking at how components in that ceiling could be built offsite,” he says.

5. Consider using prefab in renovation projects.

Prefab may not be just for new construction, the Miami Valley team says. “One of the interesting areas of potential is renovation work,” says NBBJ’s Hullinger. “You have the opportunity to prefabricate components before demolition begins, so that as demolition is occurring on site, components are being built off site. As soon as demolition is completed, these pieces could be inserted. You would minimize disruptions in the building and gain a lot of efficiencies.”

Related Stories

| Aug 11, 2010

Nurturing the Community

The best seat in the house at the new Seahawks Stadium in Seattle isn't on the 50-yard line. It's in the southeast corner, at the very top of the upper bowl. "From there you have a corner-to-corner view of the field and an inspiring grasp of the surrounding city," says Kelly Kerns, project leader with architect/engineer Ellerbe Becket, Kansas City, Mo.

| Aug 11, 2010

AIA Course: Historic Masonry — Restoration and Renovation

Historic restoration and preservation efforts are accelerating throughout the U.S., thanks in part to available tax credits, awards programs, and green building trends. While these projects entail many different building components and systems, façade restoration—as the public face of these older structures—is a key focus. Earn 1.0 AIA learning unit by taking this free course from Building Design+Construction.

| Aug 11, 2010

BIM adoption tops 80% among the nation's largest AEC firms, according to BD+C's Giants 300 survey

The nation's largest architecture, engineering, and construction companies are on the BIM bandwagon in a big way, according to Building Design+Construction's premier Top 50 BIM Adopters ranking, published as part of the 2009 Giants 300 survey. Of the 320 AEC firms that participated in Giants survey, 83% report having at least one BIM seat license in house, half have more than 30 seats, and near...

| Aug 11, 2010

World's tallest all-wood residential structure opens in London

At nine stories, the Stadthaus apartment complex in East London is the world’s tallest residential structure constructed entirely in timber and one of the tallest all-wood buildings on the planet. The tower’s structural system consists of cross-laminated timber (CLT) panels pieced together to form load-bearing walls and floors. Even the elevator and stair shafts are constructed of prefabricated CLT.

| Aug 11, 2010

Integrated Project Delivery builds a brave, new BIM world

Three-dimensional information, such as that provided by building information modeling, allows all members of the Building Team to visualize the many components of a project and how they work together. BIM and other 3D tools convey the idea and intent of the designer to the entire Building Team and lay the groundwork for integrated project delivery.

| Aug 11, 2010

Great Solutions: Healthcare

11. Operating Room-Integrated MRI will Help Neurosurgeons Get it Right the First Time A major limitation of traditional brain cancer surgery is the lack of scanning capability in the operating room. Neurosurgeons do their best to visually identify and remove the cancerous tissue, but only an MRI scan will confirm if the operation was a complete success or not.

| Aug 11, 2010

Great Solutions: Collaboration

9. HOK Takes Videoconferencing to A New Level with its Advanced Collaboration Rooms To help foster collaboration among its 2,212 employees while cutting travel time, expenses, and carbon emissions traveling between its 24 office locations, HOK is fitting out its major offices with prototype videoconferencing rooms that are like no other in the U.

| Aug 11, 2010

2009 Judging Panel

A Matthew H. Johnson, PE Associate Principal Simpson Gumpertz & HegerWaltham, Mass. B K. Nam Shiu, SE, PEVP Walker Restoration Consultants Elgin, Ill. C David P. Callan, PE, CEM, LEED APSVPEnvironmental Systems DesignChicago D Ken Osmun, PA, DBIA, LEED AP Group President, ConstructionWight & Company Darien, Ill.

| Aug 11, 2010

Inspiring Offices: Office Design That Drives Creativity

Office design has always been linked to productivity—how many workers can be reasonably squeezed into a given space—but why isn’t it more frequently linked to creativity? “In general, I don’t think enough people link the design of space to business outcome,” says Janice Linster, partner with the Minneapolis design firm Studio Hive.

| Aug 11, 2010

BIM school, green school: California's newest high-performance school

Nestled deep in the Napa Valley, the city of American Canyon is one of a number of new communities in Northern California that have experienced tremendous growth in the last five years. Located 42 miles northeast of San Francisco, American Canyon had a population of just over 9,000 in 2000; by 2008, that figure stood at 15,276, with 28% of the population under age 18.

boombox1
boombox2
native1

More In Category




Adaptive Reuse

Detroit’s Michigan Central Station, centerpiece of innovation hub, opens

The recently opened Michigan Central Station in Detroit is the centerpiece of a 30-acre technology and cultural hub that will include development of urban transportation solutions. The six-year adaptive reuse project of the 640,000 sf historic station, created by the same architect as New York’s Grand Central Station, is the latest sign of a reinvigorating Detroit.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021

Â