flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

New ASU science and tech building features innovative sustainability elements

Education Facilities

New ASU science and tech building features innovative sustainability elements

Energy Use Intensity (EUI) is 50% below baseline.


By Peter Fabris, Contributing Editor | February 24, 2022
Arizona State University’s Interdisciplinary Science and Technology Building 7 A.jpg
ASU Science & Tech Building 7 puts an emphasis on energy efficiency. Photo: CDP Commercial Photography

Arizona State University’s Interdisciplinary Science and Technology Building 7, completed in December 2021, was constructed with numerous innovative sustainability elements.
 
The building team worked to support ASU’s carbon neutrality by 2035 goal. It took a holistic approach to sustainability and carbon neutrality on all decisions, according to GC McCarthy Building Companies. The result is a building with an Energy Use Intensity (EUI) that is roughly 50% below baseline.

The $192 million, 281,000 sf, high-performance research facility fosters an interdisciplinary approach to knowledge generation and leading-edge research, including the sustainable use of food, water, and energy. Labs include spaces for biological sciences, engineering, life sciences, and sustainability, as well as dry lab space for computing, cyber-security, engineering design and fabrication, and robotics.

ASU Science & Tech Building 7
Photo: CDP Commercial Photography

Notable sustainability features include:

  • 42-foot architectural columns elevate the building entrance, creating significant shade areas and positioning the building to capture wind for natural ventilation.
  • Radiant cooling system combines chilled beams, chilled ceilings, and chilled sails, providing comfort for occupants and supporting low-flow ventilation.
  • Water efficiency strategies include: Use of Arizona’s Salt River Project non-potable canal water on the site’s landscape; water-saving drip irrigation and “smart” irrigation controls; hardscape designed so all rainfall conveys to planting areas; and the capture of mechanical system condensate water to irrigate plants.
  • A 40% fly ash concrete mix that met structural integrity measures and provides a consistent aesthetic finish.
  • First building in Arizona to use BubbleDeck, a void form structural deck system that uses a patented integration technique linking air, steel, and concrete in a two-way structural slab, resulting in less concrete and a lighter structure and foundation system.
  • Inspired by self-shading pleats of the Sonoran cactus, the exterior skin takes shape in large GFRC rainscreen panels over a prefabricated building envelope. Skin sensors installed around the exterior track heat transfer throughout building’s lifecycle.

The structure now serves as the gateway to the Arizona State University Tempe campus and faces one of the busiest intersections in the Metro Phoenix area. The building will house Global Futures, the Julie Ann Wrigley Global Institute of Sustainability, the Rob and Melani Walton Sustainability Solutions Service, School of Sustainability, and the Institute of Human Origins, in addition to public outreach and exhibit space. The building will also include classrooms and a conference center with a 389-seat presentation hall.
 
Owner and/or developer: Arizona State University
Design architect: Architekton l Grimshaw
Architect of record: Architekton l Grimshaw
MEP engineer: BuroHappold Engineering
Structural engineer: BuroHappold Engineering
General contractor/construction manager: McCarthy Building Companies
Sustainability Consultants: Thornton Tomasetti

20220114_ASU_ISTB7_07.jpg
Photo: CDP Commercial Photography
20220114_ASU_ISTB7_17
Photo: CDP Commercial Photography
20220114_ASU_ISTB7_21.jpg
Photo: CDP Commercial Photography
20220114_ASU_ISTB7_25
Photo: CDP Commercial Photography
20220114_ASU_ISTB7_13.jpg
Photo: CDP Commercial Photography
20220114_ASU_ISTB7_16.jpg
Photo: CDP Commercial Photography

 

Related Stories

| Nov 14, 2014

What college students want in their living spaces

In a recent workshop with 62 college students, architects from Little explored the changing habits and preferences of today's students, and how those changes affect their living spaces.

| Nov 12, 2014

Chesapeake Bay Foundation completes uber-green Brock Environmental Center, targets Living Building certification

More than a decade after opening its groundbreaking Philip Merrill Environmental Center, the group is back at it with a structure designed to be net-zero water, net-zero energy, and net-zero waste.

| Nov 7, 2014

NORD Architects releases renderings for Marine Education Center in Sweden

The education center will be set in a landscape that includes small ponds and plantings intended to mimic an assortment of marine ecologies and create “an engaging learning landscape” for visitors to experience nature hands-on.

| Nov 6, 2014

Studio Gang Architects will convert power plant into college recreation center

The century-old power plant will be converted into a recreation facility with a coffee shop, lounges, club rooms, a conference center, lecture hall, and theater, according to designboom.

| Oct 29, 2014

Newtown, Conn., breaks ground on new Sandy Hook Elementary School

Construction on the 87,000-square-foot building will begin in March 2015, and is set to open for the fall 2016 school year. The property is fenced off so that the site cannot be seen or photographed from the outside. 

| Oct 26, 2014

Study asks: Do green schools improve student performance?

A study by DLR Group and Colorado State University attempts to quantify the student performance benefits of green schools.

| Oct 21, 2014

Check out BD+C's GreenZone Environment Education Classroom debuting this week at Greenbuild

At the conclusion of the show, the modular classroom structure will be moved to a permanent location in New Orleans' Lower 9th Ward, where it will serve as a community center and K-12 classroom.

| Oct 20, 2014

Institute for young innovators breaks ground at the University of Utah

The five-story, 148,000-sf building is designed to function like a student union for entrepreneurs and innovators, with a 20,000-sf “garage” that will be open for any student to attend events, build prototypes, and launch companies.

| Oct 16, 2014

Perkins+Will white paper examines alternatives to flame retardant building materials

The white paper includes a list of 193 flame retardants, including 29 discovered in building and household products, 50 found in the indoor environment, and 33 in human blood, milk, and tissues.

boombox1
boombox2
native1

More In Category

Curtain Wall

7 steps to investigating curtain wall leaks

It is common for significant curtain wall leakage to involve multiple variables. Therefore, a comprehensive multi-faceted investigation is required to determine the origin of leakage, according to building enclosure consultants Richard Aeck and John A. Rudisill with Rimkus. 


K-12 Schools

New K-12 STEM center hosts robotics learning, competitions in Houston suburb

A new K-12 STEM Center in a Houston suburb is the venue for robotics learning and competitions along with education about other STEM subjects. An unused storage building was transformed into a lively space for students to immerse themselves in STEM subjects. Located in Texas City, the ISD Marathon STEM and Robotics Center is the first of its kind in the district. 



halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021