flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Mayo Clinic's breakthrough research lab puts evidence-based design to the test

Game Changers

Mayo Clinic's breakthrough research lab puts evidence-based design to the test

Mayo teams up with Delos to bring hard science to EBD research.


By Robert Cassidy, Executive Editor | February 5, 2016
Mayo Clinic's breakthrough research lab puts evidence-based design to the test

Model: Centerbrook Architects & Planners

There’s been a lot of talk over the past 20 years about evidence-based design. EBD is the idea that improvements to the design of buildings, particularly to their interior spaces—more daylight, improved air quality, better lighting—can have a positive effect on human health and performance.

The problem with EBD is that it’s very hard to conduct truly rigorous scientific studies on humans. Was it the improved lighting that enabled students to boost their test scores, or was it better airflow in the classroom? Did that hospital patient heal more quickly because she had a window with a view to the outside, or was she just a fast healer? Too many variables, not enough controls, so it’s anybody’s guess how much, if anything, the design contributed to the outcome.

The Mayo Clinic and Delos, the developer of the Well Building Standard, have teamed up to bridge this information gap. They have built a 7,500-sf laboratory at Mayo’s Rochester, Minn., campus, where researchers will perform sophisticated, reproducible (that’s important) scientific studies on design’s impact on human health and performance. The goal, according to Delos COO Peter Scialla, is to expand the concept of environmental sustainability to embrace what he calls “biological sustainability.”

The Well Living Lab, designed by Centerbrook Architects & Planners (with Knutson Construction as CM), has six experimental modules that can be formed into a variety of indoor spaces: an open-plan or closed office floor, a kitchen, a hotel or hospital room, a classroom, etc. The walls, floors, ceilings, fixtures, and plumbing—yes, even the plumbing—can be completely reconfigured.

 

The Well Living Lab has six experimental modules that can be formed into a variety of indoor spaces, including an office, kitchen, and hotel room. 

 

The modules, as well as the furniture, casework, and finishings, are loaded with sensors so that test subjects’ responses can be captured without having to attach wire leads to them. For example, bed sensors will determine a person’s lying-down position and how much pressure is being exerted on specific body parts—information that one day could lead to ways to relieve bed sores in long-term hospital patients, or just give weary hotel guests a better night’s sleep.

In certain studies participants will wear sensor-enabled wristbands or clothing to gauge heart rate, galvanic skin response, motion, skin and near-body temperature, respiration, and physical posture.

Sensors embedded in walls, ceilings, appliances, and fabrics will measure factors like sound, street noise, room temperature, humidity, air particulates, and light (including spectral power density). High-definition cameras will zoom in on test subjects to record facial expressions and gestures.

Research experiments will test the effect of single or multiple variables, such as air quality, supplied lighting, and daylighting, on subjects’ stress, fitness, nutrition, eating habits, performance in cognitive and physical skills, and sleep. Further down the line, building product manufacturers may be able to use the lab to test the efficacy of their products on human health. All this activity will be managed and documented from a high-tech control room.

The Well Living Lab is an important breakthrough in environmental design. If it lives up to even a fraction of its promise, it could provide designers of hospitals, outpatient medical facilities, schools, university classrooms, hotels, and office spaces with scientifically valid data to produce designs that really do contribute to human health and performance. Real science, not wishful thinking.

Experiments are scheduled to begin in the next couple of months, once the Well Living Lab has completed its break-in period.

 

Central control room

Sensors embedded in walls, ceilings, appliances, and fabrics measure factors like sound, street noise, room temperature, humidity, air particulates, and light. 

Related Stories

| Nov 11, 2012

Greenbuild 2012 Report: Healthcare

Green medical facilities extend beyond hospital walls

| Oct 24, 2012

Loma Linda University Medical Center lets light in with metal wall systems

Designers for the building aimed to create a positive environment for patients and visitors, and wanted to let in as much natural daylight as possible.

| Oct 11, 2012

Hank Adams Named to Lead HDR’s Healthcare Program

With more than 25 years of experience, HDR vice president is tapped to lead firm's healthcare projects.

| Oct 10, 2012

Skanska to Construct Children’s Hospital of Richmond at Virginia Commonwealth University Pavilion

Skanska USA announced that it has been awarded an $80 million contract to construct a new Children’s Pavilion at Children’s Hospital of Richmond at VCU.

| Oct 2, 2012

Bernards working on project at L.A. White Memorial Medical Center

The new facility is a $15-million, 41,000-sf concrete structure which includes three stories of medical office space atop a three-level parking garage.

| Sep 28, 2012

Seattle is home to first LEED-certified modular radiation center

By using modular construction and strategic site design, RAD Medical Systems built the first radiation center to receive LEED certification.

| Sep 20, 2012

Forrester begins construction of freestanding cancer center in Montgomery County, Md.

The new 51,000-square-foot building will include two linear accelerator vaults for radiation equipment.

| Sep 7, 2012

Healthcare architects get a preview of tomorrow’s medical landscape

The topic on everyone’s mind was how the Affordable Care Act would impact healthcare design and construction––and whether the law would even make it past the coming election cycle.

| Sep 7, 2012

Lucile Packard Children’s Hospital breaks ground on expansion

Sustainability and nature at the heart of the new addition at the Stanford University Medical Center designed by Perkins+Will.

| Sep 6, 2012

CPPI awarded $30.3 million contract for University of Florida’s Harrell Medical Education Building

The specialized interdisciplinary learning environment will serve as a focal point for integration and program development for all primary care educational activities in the College of Medicine.

boombox1
boombox2
native1

More In Category


Healthcare Facilities

New El Paso VA healthcare center includes 47 departments, brain and spinal cord injury treatment services

A new 492,000 sf Veterans Administration ambulatory care facility on the William Beaumont Army Medical Center campus near El Paso, Texas will include 47 medical departments and provide brain and spinal cord injury treatment services. A design-build team of Clark Construction, SmithGroup, and HKS is spearheading the project that recently broke ground with anticipated completion in 2028.



Curtain Wall

7 steps to investigating curtain wall leaks

It is common for significant curtain wall leakage to involve multiple variables. Therefore, a comprehensive multi-faceted investigation is required to determine the origin of leakage, according to building enclosure consultants Richard Aeck and John A. Rudisill with Rimkus. 

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021