flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

GREENBUILD 2011: Methods, impacts, and opportunities in the concrete building life cycle

GREENBUILD 2011: Methods, impacts, and opportunities in the concrete building life cycle


By By BD+C Staff | October 4, 2011
Researchers at the Massachusetts Institute of Technologys (MIT) Concrete Sustainability Hub conducted a life-cycle assessment (

 

The need to decrease energy usage and subsequent emissions from the building sector has been at the forefront of U.S. green movement. Not only has energy reduction been viewed as a step for improving the environment, it has financial benefits for companies and homeowners.

To address this, researchers at the Massachusetts Institute of Technology’s (MIT) Concrete Sustainability Hub conducted a life-cycle assessment (LCA) study to evaluate and improve the environmental impact and study how the “dual use” aspect of concrete – its ability to offer a durable structure while providing thermal mass benefits for energy loads – affects the environmental footprint of the structure.

"Methods, Impacts, and Opportunities in the Concrete Building Life Cycle" provides a comprehensive analysis that advances three key areas relevant to the buildings LCA field: methodology, benchmarking, and impact-reduction opportunities. The study is a major development for construction-related life-cycle assessment because it thoroughly examines all phases of the complete life cycle of a building – from acquisition of materials to construction, the use of the building, and finally demolition and end of life.

“Most environmental assessments do not move beyond the construction phase and only provide a partial picture of the full impact a particular material can have on a building. This is short-sighted,” David Shepherd, director of sustainable development for the Portland Cement Association (PCA) said. “The heating, cooling, and general operations of buildings and homes in the United States accounts for approximately 70 percent of national energy consumption each year and an accurate LCA needs to include the operational phase.”

Concrete, essential for the construction of buildings and homes, has largely been chosen as a building material for its structural properties rather than its energy-saving properties. Although sustainable builders have known the thermal mass attributes of concrete significantly reduce heating and cooling needs, the energy consumption required to produce its key ingredient, cement, has raised questions about its environmental viability.

In its environmental assessment, MIT researchers found concrete homes produce lower greenhouse gas emissions than current best practice code – compliant wood-frame residences throughout a 60-year service life.

Concrete homes did have a higher embodied global warming potential (GWP) associated with the pre-use phase of LCA when raw materials are harvested and turned into construction materials, transported to the site, and assembled into the finished home. However, this phase accounts for only about 2 to 12%of the overall global warming potential for the life of the home. For the 60-year period of the study, houses constructed with insulated concrete forms have 5 to 8 percent lower GWP than current code compliant light frame wood houses, based on greater thermal mass and higher R-values. Researchers found similar results when evaluating multifamily residences.

Commercial office buildings built with a concrete structural frame produce slightly less greenhouse gas emissions over a 60-year service life than commercial structures built with steel frames, based on the results of the comprehensive MIT assessment.

MIT researchers then evaluated strategies to lower a concrete building’s carbon footprint and overall environmental impact. A major advancement was the incorporation of a cost-impact analysis to determine whether or not a given environmental reduction strategy made economic sense. Among the strategies evaluated, the two that reduced embodied emissions – increased fly ash and reducing the thickness of concrete walls from a 6-inch to a 4-inch concrete core – were found to be both economical and effective ways to reduce emissions. BD+C

Related Stories

| Dec 19, 2011

Chicago’s Aqua Tower wins international design award

Aqua was named both regional and international winner of the International Property Award as Best Residential High-Rise Development.

| Dec 19, 2011

Summit Design+Build selected as GC for Chicago recon project

The 130,000 square foot building is being completely renovated.

| Dec 19, 2011

USGBC welcomes new board directors?

Board responsible for articulating and upholding the vision, values, mission of organization.

| Dec 19, 2011

Davis Construction breaks ground on new NIAID property

The new offices will total 490,998 square feet in a 10-story building with two wings of 25,000 square feet each. 

| Dec 19, 2011

Survey: Job growth driving demand for office and industrial real estate in Southern California

Annual USC Lusk Center for Real Estate forecast reveals signs of slow market recovery.

| Dec 16, 2011

Goody Clancy-designed Informatics Building dedicated at Northern Kentucky University

The sustainable building solution, built for approximately $255-sf, features innovative materials and intelligent building systems that align with the mission of integration and collaboration. 

| Dec 16, 2011

Stalco Construction converts Babylon, N.Y. Town Hall into history museum

The project converted the landmark structure listed on the National Register of Historic Places into the Town of Babylon History Museum at Old Town Hall.

| Dec 14, 2011

Belfer Research Building tops out in New York

Hundreds of construction trades people celebrate reaching the top of concrete structure for facility that will accelerate treatments and cures at world-renowned institution.

| Dec 14, 2011

Tyler Junior College and Sika Sarnafil team up to save energy

Tyler Junior College wanted a roofing system that wouldn’t need any attention for a long time.

boombox1
boombox2
native1

More In Category



Urban Planning

The magic of L.A.’s Melrose Mile

Great streets are generally not initially curated or willed into being. Rather, they emerge organically from unintentional synergies of commercial, business, cultural and economic drivers. L.A.’s Melrose Avenue is a prime example. 


Curtain Wall

7 steps to investigating curtain wall leaks

It is common for significant curtain wall leakage to involve multiple variables. Therefore, a comprehensive multi-faceted investigation is required to determine the origin of leakage, according to building enclosure consultants Richard Aeck and John A. Rudisill with Rimkus. 

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021