flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Facebook’s prefab data center concept aims to slash construction time in half

Facebook’s prefab data center concept aims to slash construction time in half

The tech giant's newly developed Rapid Deployment Data Center concept utilizes modular and Lean design principles to streamline planning and construction.


By David Barista, Editor-in-Chief | August 4, 2014
In May, Facebook broke ground on an expansion to its data center campus in Lule
In May, Facebook broke ground on an expansion to its data center campus in Lule, Sweden. Using a new prefab construction proces

Less than a year after opening its ultra-green, hydropowered data center facility in Luleå, Sweden, Facebook is back at it in Mother Svea with yet another novel approach to data center design. In May, the tech giant broke ground on an expansion to its Luleå facility, which is rated as one of the most energy-efficient data centers in the world, with an average power usage effectiveness (PUE) of 1.05. 

With Luleå 2, the company expects to achieve the same energy performance, but with a construction and deployment schedule that is roughly half its typical data center project. To do so, the Building Team is implementing Facebook’s newly developed Rapid Deployment Data Center (RDDC) concept, which utilizes modular and Lean design principles to streamline planning and construction, reduce the amount of materials, and create facilities that are more site-agnostic, according to Marco Magarelli, AIA, Architect, Datacenter R&D with Facebook. 

“By deploying pre-manufactured assemblies, a majority of the components can be used interchangeably,” wrote Magarelli in a recent blog post on the RDDC concept. “It’s our hope that by standardizing the designs of our component assemblies, much like we do with OCP servers, we can deploy a unitized data center into almost any region in the world faster, leaner, and more cost effectively.”

Developed through the Facebook-initiated Open Compute Project, which aims to crowdsource data center design, the RDDC approach relies on two core prefab concepts:

Chassis assembly method. Pre-assembled steel frames 12 feet wide and 40 feet long serve as the “chassis,” on which the vital data center components—cable trays, power busways, containment panels, lighting, etc.—are bolted in a factory, much like an auto assembly line. The chassis are shipped to the site and mounted atop steel columns. The chassis are attached end to end to create the typical 60-foot-long cold aisle, with 10 feet of aisle space at each end. This series of connected chassis forms a “canopy,” under which the server racks reside.  

“Unlike containerized solutions, which are a full volumetric approach that includes a floor, this idea focuses solely on the framework that exists above the racks, to avoid shipping the empty space that will eventually be occupied by the racks,” said Magarelli.

Flat-pack assemblies. This Ikea-like approach neatly packs the walls and ceiling panels into standard, 8-foot modules that are easily transportable to a site on a flatbed trailer without requiring special permits for wide loads. Standard building products like metal studs and preassembled, unitized containment panels are then erected on the site and are fully self-supporting. 

The ceiling panels use Epicore metal deck product, which spans the 12-foot width of the cold aisle and racks. This serves the additional duty of carrying the loads of the trays, power bus, and light fixtures below it using a proprietary hanger clip for the threaded rods, according to Magarelli.

“Careful attention was paid to minimizing the number of unique components,” he wrote. “For example, 364 identical wall panels are used in each data hall.”

For more on Facebook’s Rapid Deployment Data Center method, visit: www.opencompute.org/blog/faster-leaner-smarter-better-data-centers.

Related Stories

| Jun 13, 2013

AIA partners with industry groups to launch $30,000 'Designing Recovery' design competition

The program will award a total of $30,000 to three winning designs, divided equally between three locations: Joplin, Mo., New Orleans, and New York. 

| Jun 12, 2013

More than 90% of New York City schools have code violations

More than 90% of New York City schools have at least one outstanding building code violation. Loose wires, stuck doors and inadequate ventilation are just some of the problems.

| Jun 12, 2013

5 building projects that put the 'team' in teamwork

The winners of the 2013 Building Team Awards show that great buildings cannot be built without the successful collaboration of the Building Team. 

| Jun 12, 2013

Sacred synergy achieves goals for religious education [2013 Building Team Award winner]

A renovation/addition project at Columbia Theological Seminary unites a historic residence hall with a modern classroom facility.

| Jun 12, 2013

‘Talking’ Braille maps help the visual impaired

Talking pen technology, combined with tactile maps, allows blind people to more easily make their way around BART stations in the Bay Area.

| Jun 11, 2013

Music/dance building supports sweet harmony [2013 Building Team Award winner]

A LEED Gold project enhances a busy Chicago neighborhood, meeting ambitious criteria for acoustical design and adaptability.

| Jun 11, 2013

Vertical urban campus fills a tall order [2013 Building Team Award winner]

Roosevelt University builds a 32-story tower to satisfy students’ needs for housing, instruction, and recreation.

| Jun 11, 2013

Building a better box: High-bay lab aims for net-zero [2013 Building Team Award winner]

Building Team cooperation and expertise help Georgia Tech create a LEED Platinum building for energy science.

| Jun 11, 2013

Finnish elevator technology could facilitate supertall building design

KONE Corporation has announced a new elevator technology that could make it possible for supertall buildings to reach new heights by eliminating several problems of existing elevator technology. The firm's new UltraRope hoisting system uses a rope with a carbon-fiber core and high-friction coating, rather than conventional steel rope.

| Jun 10, 2013

Lake Washington STEM school combines modular and site-built construction to meet ambitious schedule

When the Lake Washington School District outside Seattle needed a new high school built on an ambitious permitting and construction schedule of seven months, modular construction proved to be an ideal solution.

boombox1
boombox2
native1

More In Category

Warehouses

California bill would limit where distribution centers can be built

A bill that passed the California legislature would limit where distribution centers can be located and impose other rules aimed at reducing air pollution and traffic. Assembly Bill 98 would tighten building standards for new warehouses and ban heavy diesel truck traffic next to sensitive sites including homes, schools, parks and nursing homes.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021