flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Channel glass illuminates science at the University of San Francisco

Sponsored Content

Channel glass illuminates science at the University of San Francisco

In implementing the design vision, one challenge was to create an attention-grabbing, garden-level façade that satisfies acoustic and thermal performance demands. 


By Technical Glass Products | July 7, 2014
Channel glass exterior faade. Photo: Technical Glass Products/NBBJ
Channel glass exterior faade. Photo: Technical Glass Products/NBBJ

Project: University of San Francisco, John Lo Schiavo, S.J. Center for Science and Innovation
Location: San Francisco
Architect: NBBJ
Glass: Pilkington Profilit™ translucent channel glass system with Lumira® aerogel insulation
Glass Supplier: Technical Glass Products

 

The University of San Francisco’s new John Lo Schiavo Center for Science and Innovation (CSI) brings science to the forefront of academic life. Its glossy, three-story exterior invites students into the facility, and then flows sleekly down into the hillside where below-grade laboratories and classrooms make efficient use of space on the landlocked campus. 

For NBBJ architects, the inspiration for the new building came from the faculty’s desire to bring passion to the study of science within the USF academic curriculum. “A key driver behind the CSI was to put science on display and create buzz within the student body,” says Lilian Asperin-Clyman, principal at NBBJ. 

To meet functional demands and generate the desired interest in the science facility, the design team looked to high-performance materials. A curtain wall with fritted glass and flexible shades provides students with views to informal learning areas and outdoor spaces to encourage scientific discovery.

Skylights and glazed teaching walls with a writable surface and visual connectivity help bathe lower, “garden level” education areas in sunlight to blur the boundary between above- and below-grade. Sloped walkways promote seamless circulation between the building’s main campus and garden-level spaces.

 


Glazed channel glass corridor uses borrowed light. Photo: Technical Glass Products/NBBJ

 

In implementing the design vision, one challenge was to create an attention-grabbing, garden-level façade that satisfies acoustic and thermal performance demands. NBBJ found their solution with Pilkington Profilit™ channel glass from Technical Glass Products (TGP). 

The linear, “U”-shaped, cast-glass channels are self-supporting and mounted in an extruded metal perimeter frame. In the case of CSI, they were installed vertically, forming tight radii as they animate and follow the curve of the building’s adjacent walkway. The combination of raked and curved channel glass heads and sills make the size and positioning of each channel glass piece unique, and allow the façade to transition between curved and straight sections. The lighting strategy where channel glass is used creates a dramatic “lantern” effect that contributes to the character of the exterior spaces after dark.  

At the CSI’s main-level entrance, a second layer of channel glass mirrors a portion of the exterior channel glass façade to create a glazed corridor. Its clear channel glass interior and translucent channel glass exterior combine to create what San Francisco Chronicle architecture critic John King hailed as the building’s “most potent architectural treat.” 

“The glazed hallway adds dynamism to the building by highlighting the silhouette of students walking inside,” adds Asperin-Clyman. “It also improves safety on campus by allowing borrowed light to spill out from the building on to an area frequently traversed by students, faculty and visitors.” The sloped walkway complies with ADA accessibility requirements and connects the entrance lobby to the entry to the main lecture hall.

Both the exterior façade and glazed channel glass hallway help the design team meet thermal and acoustic performance goals. The design incorporates clear channel glass with a low-emissivity coating in a custom painted thermally improved frame with head receptor. In select locations, the use of Lumira® aerogel in the enclosed space between the channels helps enhance energy performance and reduce sound transmission.

“By using unique, structurally sound and high-performing materials like Pilkington Profilit channel glass, we were able to experiment with geometry, layering and lighting to create spaces that not only attract students, but also satisfy the facility’s highest functional requirements,” concludes Asperin-Clyman. 

Today, the innovative CSI building embodies the university’s mission to bring science and discovery into the everyday lives of students. It is designed to LEED Gold standards. 

For more information on Pilkington Profilit, along with TGP’s other specialty architectural glass and framing products, visit tgpamerica.com

Technical Glass Products
800.426.0279
800.451.9857 – fax
sales@tgpamerica.com
tgpamerica.com 

Related Stories

Multifamily Housing | Apr 15, 2020

Related Group picks Stantec to design and engineer Manor Miramar residences in Florida

Related Group picks Stantec to design and engineer Manor Miramar residences in Florida.

Coronavirus | Apr 4, 2020

COVID-19: Architecture firms churn out protective face shields using their 3D printers

Architecture firms from coast to coast have suddenly turned into manufacturing centers for the production of protective face shields and face masks for use by healthcare workers fighting the COVID-10 pandemic.

Coronavirus | Mar 30, 2020

Learning from covid-19: Campuses are poised to help students be happier

Overcoming isolation isn’t just about the technological face to face, it is about finding meaningful connection and “togetherness”.

Coronavirus | Mar 15, 2020

Designing office building lobbies to respond to the coronavirus

Touch-free design solutions and air purifiers can enhance workplace wellness.

Architects | Mar 11, 2020

S/L/A/M/ Collaborative grows significantly in deal with CBRE

The architectural firm acquires five of Heery’s practices and adds 70 people.

University Buildings | Mar 9, 2020

Designing campus buildings through an equity lens

As colleges become more diverse, campus conversation is focusing on how to create equitable environments that welcome all voices.

Architects | Mar 9, 2020

New York's façade inspection program gets an overhaul following a death from falling terra cotta

January 14, 2020, kicked off big changes to the NYC Local Law 11 Façade Inspection and Safety Program (FISP) for Cycle 9.

Healthcare Facilities | Mar 9, 2020

Mobile wayfinding platform helps patients, visitors navigate convoluted health campuses

Gozio Health uses a robot to roam hospital campuses to capture data and create detailed maps of the building spaces and campus.

AEC Innovators | Mar 5, 2020

These 17 women are changing the face of construction

During this Women in Construction Week, we shine a spotlight on 17 female leaders in design, construction, and real estate to spur an important conversation of diversity, inclusion, and empowerment.

Architects | Mar 4, 2020

Yvonne Farrell and Shelley McNamara receive the 2020 Pritzker Architecture Prize

As architects and educators since the 1970s, Farrell and McNamara create spaces that are at once respectful and new.

boombox1
boombox2
native1

More In Category




Great Solutions

41 Great Solutions for architects, engineers, and contractors

AI ChatBots, ambient computing, floating MRIs, low-carbon cement, sunshine on demand, next-generation top-down construction. These and 35 other innovations make up our 2024 Great Solutions Report, which highlights fresh ideas and innovations from leading architecture, engineering, and construction firms.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021