flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

BIM’s future up in the cloud

BIM’s future up in the cloud

The AEC industry is on the cusp of a still more significant evolution with cloud computing.


By By Dominic Thasarathar | August 8, 2012
SHoP Construction is project integrator for the B2 Modular High Rise Housing @ A
SHoP Construction is project integrator for the B2 Modular High Rise Housing @ Atlantic Yards, the first of three new residentia
This article first appeared in the August 2012 issue of BD+C.

Imagine a future in which you could access building information modeling technology anywhere, at any time. A future in which you could tap unlimited computing resources with the click of a mouse and crack even the most complex building analysis task with virtually no delay.

Imagine a future in which collaboration would be painless, integration seamless, and access to architecture, engineering, and construction expertise limitless. Finally, imagine a future where the ability to plug-and-play business partners into your project teams could be done with almost no effort.

At first, this might sound too good to be true. But just as BIM has significantly enhanced how Building Teams plan, deliver, and manage the built environment, cloud computing is now set to revolutionize BIM. According to “Sizing the Cloud,” an April 2011 research paper by Stefan Reid (published by Forrester Research), the global market for cloud computing will reach $241 billion in 2020. Clearly, cloud computing is poised to challenge traditional business models and create substantial opportunities globally for AEC firms.

Defining the cloud

The traditional approach to computing involves buying hardware—laptops, servers, routers, modems, switches, and so on—and software, then bringing in support personnel and project managers to tackle everything from integrating BIM systems to upgrading procurement tools, all under the direction of a chief information officer.

In contrast, cloud computing delivers computing as a service rather than as a physical product. Essentially, it enables AEC firms to rent computing infrastructure, software, and systems through the Internet on an as-needed basis, thereby liberating design and construction firms from much of the traditional cost and bother of IT infrastructure.

Such a setup has several unique properties that give cloud computing the capability to transform the nonresidential design and construction sector:

• Ubiquitous access — The ability to access project information and software functionality on any device, from any connected location, at any time.

• Infinite computing — The cloud is infinitely scalable, at least in terms of computing firepower that can be directed at your processing requirements. This means the traditional bottlenecks created by how much capability you can pack into a single desktop PC are now sidestepped, unleashing a whole new era of supercomputing.

• Evergreen service marketplace — The cloud is a democratic environment, enabling anyone to package up knowledge as a service and become a service provider. The recent explosion in smart phone apps is just one example. Now imagine the power of accessing the most current knowledge from across the AEC sector’s constituency.

BIM and the cloud

So, what happens when BIM processes enter the cloud? First, some of the traditional challenges that AEC firms encounter when implementing BIM are neatly sidestepped. Frequently, this occurs as a result of model collaboration, as well as the well-known limitations of desktop computing power to handle data-heavy models. “BIM enables a virtual design and construction process,” says Jonathan Mallie, principal and managing director at New York City-based SHoP Construction (www.shop-construction.com), an industry leader in integrating emerging technologies. “We see the use of cloud computing as a way to better use BIM in the VDC process.” 

Second, and more significantly, BIM in the cloud helps reshape the competitive landscape across AEC, enabling any company in the supply chain to offer BIM-based services. Consider the following:

• Information collaboration — With a model located in the cloud supporting concurrent, controlled access and manipulation of all project information, the overhead associated with exchanging models and managing information integrity across the project constituency evaporates. There is one model, one version.

As project integrator, SHoP Construction is currently implementing a Web-based BIM management tool on the B2 Modular Housing Project in the Atlantic Yards in Brooklyn, N.Y. “We envision the model becoming a visual database of searchable project information, much like an Internet search engine,” says Mallie. “The Internet wouldn’t be very useful if it only had one person on it. The more stakeholders contributing to the model, the more valuable that model becomes.”

• Business collaboration — Accessing complete information through cloud-based services while more easily and effectively collaborating with new business partners on your project offers the potential to significantly improve the traditional relationship between Building Team member firms. Conversely, there’s the possibility to be a provider of that knowledge via one or more BIM services. Got a process for determining total cost of ownership for energy use or carbon analysis? Offer it as a BIM service.

Working on the Barclays Center Arena in Brooklyn, SHoP prototyped a Web-based portal to enable project stakeholders to track the fabrication and installation progress of no less than 12,000 uniquely sized steel panels for the arena’s façade. “The constantly updated 4D model evolved into a critical tool for the design-build team to understand where we were in production and how schedule changes would impact installation,” says Mallie. “What was initiated for internal use developed into a teamwide collaborative process.”

• Iteration — As BIM’s capability moves beyond the spatial processes of physical coordination into realms of the open-ended analytical, the need to undertake concurrent, exhaustive analysis across multiple dimensions (energy, carbon, whole-life cost, maintainability, etc.) continues to grow. Crunching vast amounts of data isn’t feasible in a desktop environment. Accessing the cloud’s infinite computing capabilities, however, enables Building Teams to optimize design across all constraints.

• Scalability — With the varying workload profile in the AEC environment, it can be tricky to get the size and mix of your so-called “IT estate” just right. Though a certain minimum level is always needed, the on-demand rental nature of the cloud helps you better flex along with your workload. A significant section of your hardware, software, and even support components can be more rationally aligned with your workload.

Opening new windows of opportunity

As BIM enters the cloud, the process is primed to provide efficiency and productivity benefits across the asset life cycle; it will significantly accelerate the manner in which the AEC sector plans, builds, and manages the built environment. BIM will also give rise to a range of new opportunities for AEC sector businesses to become service providers.

Five years ago, “clash detection” was a largely unknown term, while BIM was still the stuff of theory. “In the early phase of BIM, the challenge was to generate the information,” says SHoP’s Mallie. “Now, we have a great deal of data, and the true challenge is to manage and use that data most effectively. The cloud is an important tool in helping us do just that.”

Make no mistake: The AEC industry is on the cusp of a still more significant evolution with cloud computing. +
--
Dominic Thasarathar is a Senior Industry Program Manager for Construction at Autodesk, Inc.

Related Stories

| Feb 11, 2011

RS Means Cost Comparison Chart: Office Buildings

This month's RS Means Cost Comparison Chart focuses on office building construction.

| Feb 11, 2011

Sustainable features on the bill for dual-building performing arts center at Soka University of America

The $73 million Soka University of America’s new performing arts center and academic complex recently opened on the school’s Aliso Viejo, Calif., campus. McCarthy Building Companies and Zimmer Gunsul Frasca Architects collaborated on the two-building project. One is a three-story, 47,836-sf facility with a grand reception lobby, a 1,200-seat auditorium, and supports spaces. The other is a four-story, 48,974-sf facility with 11 classrooms, 29 faculty offices, a 150-seat black box theater, rehearsal/dance studio, and support spaces. The project, which has a green roof, solar panels, operable windows, and sun-shading devices, is going for LEED Silver.

| Feb 11, 2011

BIM-enabled Texas church complex can broadcast services in high-def

After two years of design and construction, members of the Gateway Church in Southland, Texas, were able to attend services in their new 4,000-seat facility in late 2010. Located on a 180-acre site, the 205,000-sf complex has six auditoriums, including a massive 200,000-sf Worship Center, complete with catwalks, top-end audio and video system, and high-definition broadcast capabilities. BIM played a significant role in the building’s design and construction. Balfour Beatty Construction and Beck Architecture formed the nucleus of the Building Team.

| Feb 11, 2011

Kentucky’s first green adaptive reuse project earns Platinum

(FER) studio, Inglewood, Calif., converted a 115-year-old former dry goods store in Louisville, Ky., into a 10,175-sf mixed-use commercial building earned LEED Platinum and holds the distinction of being the state’s first adaptive reuse project to earn any LEED rating. The facility, located in the East Market District, houses a gallery, event space, offices, conference space, and a restaurant. Sustainable elements that helped the building reach its top LEED rating include xeriscaping, a green roof, rainwater collection and reuse, 12 geothermal wells, 81 solar panels, a 1,100-gallon ice storage system (off-grid energy efficiency is 68%) and the reuse and recycling of construction materials. Local firm Peters Construction served as GC.

| Feb 11, 2011

Former Richardson Romanesque hotel now houses books, not beds

The Piqua (Ohio) Public Library was once a late 19th-century hotel that sat vacant and deteriorating for years before a $12.3 million adaptive reuse project revitalized the 1891 building. The design team of PSA-Dewberry, MKC Associates, and historic preservation specialist Jeff Wray Associates collaborated on the restoration of the 80,000-sf Richardson Romanesque building, once known as the Fort Piqua Hotel. The team restored a mezzanine above the lobby and repaired historic windows, skylight, massive fireplace, and other historic details. The basement, with its low ceiling and stacked stone walls, was turned into a castle-like children’s center. The Piqua Historical Museum is also located within the building.

| Feb 11, 2011

Justice center on Fall River harbor serves up daylight, sustainable elements, including eucalyptus millwork

Located on historic South Main Street in Fall River, Mass., the Fall River Justice Center opened last fall to serve as the city’s Superior and District Courts building. The $85 million facility was designed by Boston-based Finegold Alexander + Associates Inc., with Dimeo Construction as CM and Arup as MEP. The 154,000-sf courthouse contains nine courtrooms, a law library, and a detention area. Most of the floors have the same ceiling height, which will makes them easier to reconfigure in the future as space needs change. Designed to achieve LEED Silver, the facility’s elliptical design offers abundant natural daylight and views of the harbor. Renewable eucalyptus millwork is one of the sustainable features.

| Feb 11, 2011

Research facility separates but also connects lab spaces

California State University, Northridge, consolidated its graduate and undergraduate biology and mathematics programs into one 90,000-sf research facility. Architect of record Cannon Design worked on the new Chaparral Hall, creating a four-story facility with two distinct spaces that separate research and teaching areas; these are linked by faculty offices to create collaborative spaces. The building houses wet research, teaching, and computational research labs, a 5,000-sf vivarium, classrooms, and administrative offices. A four-story outdoor lobby and plaza and an outdoor staircase provide orientation. A covered walkway links the new facility with the existing science complex. Saiful/Bouquet served as structural engineer, Bard, Rao + Athanas Consulting Engineers served as MEP, and Research Facilities Design was laboratory consultant.

| Feb 11, 2011

A feast of dining options at University of Colorado community center, but hold the buffalo stew

The University of Colorado, Boulder, cooked up something different with its new $84.4 million Center for Community building, whose 900-seat foodservice area consists of 12 micro-restaurants, each with its own food options and décor. Centerbrook Architects of Connecticut collaborated with Denver’s Davis Partnership Architects and foodservice designer Baker Group of Grand Rapids, Mich., on the 323,000-sf facility, which also includes space for a career center, international education, and counseling and psychological services. Exterior walls of rough-hewn, variegated sandstone and a terra cotta roof help the new facility blend with existing campus buildings. Target: LEED Gold.

| Feb 11, 2011

Chicago high-rise mixes condos with classrooms for Art Institute students

The Legacy at Millennium Park is a 72-story, mixed-use complex that rises high above Chicago’s Michigan Avenue. The glass tower, designed by Solomon Cordwell Buenz, is mostly residential, but also includes 41,000 sf of classroom space for the School of the Art Institute of Chicago and another 7,400 sf of retail space. The building’s 355 one-, two-, three-, and four-bedroom condominiums range from 875 sf to 9,300 sf, and there are seven levels of parking. Sky patios on the 15th, 42nd, and 60th floors give owners outdoor access and views of Lake Michigan.

| Feb 11, 2011

Iowa surgery center addresses both inpatient and outpatient care

The 12,000-person community of Carroll, Iowa, has a new $28 million surgery center to provide both inpatient and outpatient care. Minneapolis-based healthcare design firm Horty Elving headed up the four-story, 120,000-sf project for St. Anthony’s Regional Hospital. The center’s layout is based on a circular process flow, and includes four 800-sf operating rooms with poured rubber floors to reduce leg fatigue for surgeons and support staff, two substerile rooms between each pair of operating rooms, and two endoscopy rooms adjacent to the outpatient prep and recovery rooms. Recovery rooms are clustered in groups of four. The large family lounge (left) has expansive windows with views of the countryside, and television monitors that display coded information on patient status so loved ones can follow a patient’s progress.

boombox1
boombox2
native1

More In Category




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021