flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

BIM software helps Michigan college students improve building performance

BIM software helps Michigan college students improve building performance

With Autodesk Revit Architecture, Western Michigan University students model campus buildings for energy analysis, renovations and retrofits


By Autodesk | June 3, 2011
The RCVA Building. Image courtesy of Western Michigan University and Autodesk.

Western Michigan University (WMU) is a dynamic, student-centered research university with an enrollment of 25,000. According to the U.S. News & World Report, WMU consistently ranks among the top 100 public universities in the nation. A key factor in these rankings is the university’s commitment to delivering high-quality, industry-relevant undergraduate instruction. That is one of the reasons why the Department of Civil and Construction Engineering introduced the building information modeling (BIM) process and Autodesk Revit Architecture software to the curriculum in 2008. Soon afterward, WMU initiated a much wider implementation of BIM to support the many building design projects that the planning, engineering and construction divisions were working on across the campus.

“We knew that BIM was the way to go,” says Peter Strazdas, associate vice president of facilities at WMU. “However, before using BIM on a new construction project, we wanted to explore its potential on some of our existing, in-house renovation projects.”

The Challenge

To support this effort, WMU initiated a plan to have a group of engineering students model the campus’ existing buildings in Revit Architecture.

“We wanted hands-on experience with buildings that we already understood before we used BIM on new construction,” says Mike Hodgkinson, building commissioning administrator at WMU. “It was a great learning opportunity for the students—and allowed us to stay within a reasonable budget.”

The initial plan was for the students, working 30 to 40 hours per week, to model two-thirds of the 8-million-sf campus between May and September. One of Strazdas’ ultimate goals was to use these models for energy analysis and to help with the subsequent identification of those buildings on campus most in need of renovation and retrofitting. To help demonstrate the project’s feasibility to stakeholders and facilitate whole-project review, the team used the software and its conflict resolution, visualization and planning capabilities.

The Solution

WMU turned to Autodesk reseller Kal-Blue for early guidance and training. Kal-Blue modeled the first campus building, showing the facility management team and students how the process worked. Kal-Blue also developed best practices that the design team could follow and introduced WMU to AIA E202, a document that helped determine how much detail to include in the models.

“If we drafted every detail, the process would have taken too long,” says Strazdas.

After deliberation, WMU used the graduated scale from the AIA E202 document and selected a baseline of Level 200 out of 500 for most of the buildings.

Leverage Existing Drawings

To help accelerate model creation, the design team based its work on the extensive collection of AutoCAD DWG files that WMU maintained.

“Much of the 2D information transferred easily into 3D,” says Hodgkinson. “We also updated the original designs to ensure that our models included all recent building modifications.”

The Result

The WMU design team succeeded in modeling 80% of the campus—115 buildings—by September.

“We easily surpassed our goals,” says Strazdas. “With help from Revit Architecture, our students accomplished an impressive amount very quickly.”

Others were equally impressed; several students have had inquiries from potential employers. Another group of students will complete the remaining buildings in 2011.

Make Better Decisions

Strazdas believes the models will have tremendous value on future renovations.

“We’ll share visualizations with our in-house customers during the review process,” says Strazdas. “That is much easier with Revit Architecture, Navisworks Manage, and a BIM process.”

WMU will also integrate data from the models with energy analysis software for better decisions about energy consumption and effective identification of targets for renovation and retrofitting.

WMU has already begun using the models on a renovation project that requires adding two chillers to an existing building. WMU is enhancing the model with data from a laser scan, and also piping data from an engineering consultant—raising the detail level in that part of the model to 400.

Ultimately, WMU will consolidate all campus buildings into a unified model.

“We own and operate our buildings for 50 years or more—and approximately 90% of the costs occur after construction,” says Strazdas. “We need to make smarter decisions with those assets—and to have access to real-time information about them. BIM is how we access and maintain that information.”

For more information, visit www.autodesk.com/revitarchitecture.

Related Stories

| Mar 24, 2013

World's tallest data center opens in New York

Sabey Data Center Properties last week celebrated the completion of the first phase of an adaptive reuse project that will transform the 32-story Verizon Building in Manhattan into a data center facility. When the project is completed, it will be the world's tallest data center.

| Mar 20, 2013

Folding glass walls revitalize student center

Single-glazed storefronts in the student center at California’s West Valley College were replaced with aluminum-framed, thermally broken windows from NanaWall in a bronze finish that emulates the look of the original building.

| Mar 13, 2013

Replacement escalators give Cobo Center a lift

New elevator technology enables Detroit’s Cobo Center to replace its escalators without disruption to its convention business.

| Mar 6, 2013

German demonstration building features algae-powered façade

Exterior of carbon-neutral demonstration building consists of hollow glass panels containing micro-algae "farms."

| Mar 4, 2013

Legendary structural engineer Gene Corley passes away at 77

CTLGroup, an expert engineering and materials science firm located in Skokie, Illinois, is saddened by the news that W. Gene Corley, Ph.D., S.E., P.E., Senior Vice President, died on March 1, 2013 after a brief battle with cancer.

| Feb 28, 2013

Novel multifamily solutions to be presented at New York Modular Construction Summit

The New York Modular Construction Summit will be co-hosted by the Modular Building Institute and Pratt Institute School of Architecture on May 16, 2013, in Brooklyn, N.Y.

| Feb 25, 2013

Turner employs rare 'collapsible' steel truss system at Seattle light rail station

To speed construction of the $110 million Capitol Hill Station light-rail station in Seattle, general contractor Turner Construction will use an unusual temporary framing method for the project's underground spaces.

| Feb 21, 2013

BD+C's 2011 White Paper: Zero and Net-Zero Energy Buildings + Homes

We submit our eighth White Paper on Sustainability in the hope that it will inspire architects, engineers, contractors, building owners, developers, building product manufacturers, environmentalists, policymakers, government officials, corporate executives, officeholders, and the public to foster the development of net-zero energy buildings and homes.

| Feb 18, 2013

Syracuse hospital using robots to reduce infections by 50%

Fast Company's Nina Mandell writes about how an early adopter of UV infection-control robotics—St. Joseph’s Hospital Health Center in Syracuse—is seeing positive results.

boombox1
boombox2
native1

More In Category

Curtain Wall

7 steps to investigating curtain wall leaks

It is common for significant curtain wall leakage to involve multiple variables. Therefore, a comprehensive multi-faceted investigation is required to determine the origin of leakage, according to building enclosure consultants Richard Aeck and John A. Rudisill with Rimkus. 


Geothermal Technology

Rochester, Minn., plans extensive geothermal network

The city of Rochester, Minn., home of the famed Mayo Clinic, is going big on geothermal networks. The city is constructing Thermal Energy Networks (TENs) that consist of ambient pipe loops connecting multiple buildings and delivering thermal heating and cooling energy via water-source heat pumps.



halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021