per inch; R-8.4 total) were used. When this is added to the six inches of spray foam in the stud framing cavity, the composite insulation value of the overall wall assembly is R-25.
1. Building envelope – Wrap it tightly
Energy efficiency in schools, as in virtually all buildings, begins with a well-insulated building envelope. Combined with a properly designed and maintained ventilation system to draw in fresh outside air, creating a tight envelope is the first step in the march toward energy efficiency.
Exemplifying good building envelope design principles are the Riverside and Machias elementary schools (each at 72,000 sf). Designed by NAC|Architecture, Seattle, the schools are currently under construction and will replace two older structures that were among the least energy-efficient in the Snohomish (Wash.) School District.
“We focused on how an enhanced envelope design could reduce the size and cost of the mechanical systems by reducing energy loss through the envelope,” says Philip Riedel, associate principal with NAC|Architecture. A key component of that strategy is a six-inch layer of closed-cell polyurethane foam insulation in lieu of batt insulation in the walls.
NAC also took measures to mitigate the effects of thermal bridges due to metal studs and the concrete slab. By increasing stud spacing from 16 inches on center to 24 inches, the design increases the effective wall R-value from R-7.1 to R-8.6, a 21% improvement, NAC says.
In conventional foundation construction with insulation adjacent to the interior of the stem wall and below the perimeter of the slab, heat travels from the warm concrete slab out through the concrete stem wall. “We ran rigid insulation up to the top of the slab, creating a full thermal break at the perimeter,” Riedel says. “These thermal breaks provide smaller contributions to envelope efficiency than the spray foam insulation and the triple-pane glass used in all windows and curtain walls, but we wanted to take every advantage we could.”