flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

5 things AEC pros need to know about low-e glass

5 things AEC pros need to know about low-e glass

Tips to help architects, engineers, and contractors understand and explain the differences among low-e glasses and their impact on building performance


By PPG Glass Education Center | May 17, 2013
St. Joseph Patient Care Center, Orange, Calif. Photo: Tom Kessler
St. Joseph Patient Care Center, Orange, Calif. Photo: Tom Kessler

Low-emissivity (low-e) glasses are critical to making today’s buildings brighter, more energy-efficient and more sustainable. By controlling solar heat gain and promoting daylighting, they help buildings use less energy for temperature control and lighting, while adding the human benefits associated with outdoor views and more pleasant working and living environments.

Here are five tips to help architects, engineers, and contractors understand and explain the differences among low-e glasses and their impact on building performance:

1. E = Emissivity. Emissivity refers to the relative ability of a material’s surface to radiate energy. Low-e glass has a microscopically thin coating that lowers the emissivity of the glass surface and is engineered to transmit energy from the visible light portion of the solar spectrum (between 380 and 780 nanometers), while reflecting energy from ultraviolet light (310 to 380 nanometers), which causes fading, and infrared light (above 780 nanometers), which makes buildings warmer. 

2. Think of a thermos. A thermos works by using a silver lining to continuously reflect and maintain the temperature of the drink it contains. Low-e glasses function according to the same principal, using multiple layers of silver or other low-emissivity materials in the coating to keep heat inside a building or prevent it from entering. Similarly, thermoses and insulating glass units (IGUs) are both designed with air spaces that provide a layer of insulation between the inside and outside.

 


CLICK IMAGE TO ENLARGE
 

 

3. More slivers of silver. Low-e coatings incorporate multiple layers of silver (or other low- emissivity materials) to control the transmission and reflection of heat and light. Recent technical advances now enable glass manufacturers to deposit up to three layers of silver on the glass substrate, which has enhanced the solar control capability of low-e glasses without diminishing their ability to transmit light.

4. Passive for insulation. Passive low-e glasses are usually made using the pyrolitic process, which means the coating is applied while the molten glass ribbon is still on the float line. This produces a “hard” coat that is fused to the glass surface and highly durable, but which has a higher emissivity that a solar-control low-e glass. Passive low-e glasses have decent insulating capabilities, but because of the limitations of metal deposition on the float line, they permit more solar infrared energy (heat) to pass through their coatings and become trapped inside the building. Consequently, passive low-e glasses are often the best choice for cold, heating-dominated climates.   

5. Solar control to reduce heat gain. Coatings for solar control, low-e glasses are applied to pre-cut sheets of glass in a vacuum chamber at room temperature. This gives glass manufacturers the ability to deposit more sophisticated coatings (with multiple layers of silver) on the glass substrate, which improves solar control of the infrared (heat) portion of the solar spectrum without substantially diminishing the transmittance of visible light. These coatings are the best choice for hot, cooling-dominated (and moderate) climates. The lower emissivity of solar control low-e glasses also provides better insulating values to maintain the interior temperatures.

To learn more about low-e glass and other topics related to designing, specifying and building with glass, visit the PPG Glass Education Center at http://educationcenter.ppg.com/.

Related Stories

| Mar 26, 2014

Callison launches sustainable design tool with 84 proven strategies

Hybrid ventilation, nighttime cooling, and fuel cell technology are among the dozens of sustainable design techniques profiled by Callison on its new website, Matrix.Callison.com. 

| Mar 26, 2014

Zaha Hadid's glimmering 'cultural hub of Seoul' opens with fashion, flair [slideshow]

The new space, the Dongdaemun Design Plaza, is a blend of park and cultural spaces meant for the public to enjoy.

| Mar 26, 2014

First look: Lockheed Martin opens Advanced Materials and Thermal Sciences Center in Palo Alto

The facility will host advanced R&D in emerging technology areas like 3D printing, energetics, thermal sciences, and nanotechnology.

| Mar 25, 2014

Sydney breaks ground on its version of the High Line elevated park [slideshow]

The 500-meter-long park will feature bike paths, study pods, and outdoor workspaces.

Sponsored | | Mar 25, 2014

Johns Hopkins chooses SLENDERWALL for a critical medical facility reconstruction

After decades of wear, the hand-laid brick envelope of the Johns Hopkins nine-story Nelson/Harvey inpatient facility began failing. SLENDERWALL met the requirements for renovation.

| Mar 25, 2014

World's tallest towers: Adrian Smith, Gordon Gill discuss designing Burj Khalifa, Kingdom Tower

The design duo discusses the founding of Adrian Smith + Gordon Gill Architects and the design of the next world's tallest, Kingdom Tower, which will top the Burj Khalifa by as much as a kilometer.

| Mar 24, 2014

Shigeru Ban receives 2014 Pritzker Architecture Prize

Shigeru Ban, a Tokyo-born, 56-year-old architect with offices in Tokyo, Paris, and New York, is rare in the field of architecture. He designs elegant, innovative work for private clients, and uses the same inventive and resourceful design approach for his extensive humanitarian efforts.

| Mar 24, 2014

Snøhetta unveils plans for serpentine mountain hotel

The winding hotel and apartment building will be built between the mountains and the sea in remote Glåpen, Norway.

| Mar 24, 2014

Frank Lloyd Wright's S.C. Johnson Research Tower to open to the public—32 years after closing

The 14-story tower, one of only two Wright-designed high-rises to be built, has been off limits to the public since its construction in 1950.

Sponsored | | Mar 21, 2014

Kameleon Color paint creates color-changing, iridescent exterior for Exploration Tower at Port Canaveral

Linetec finishes Firestone’s UNA-CLAD panels, achieving a one-of-a-kind, dynamic appearance with the first use of Valspar’s new Kameleon Color

boombox1
boombox2
native1

More In Category




Government Buildings

One of the country’s first all-electric fire stations will use no outside energy sources

Charlotte, N.C.’s new Fire Station #30 will be one of the country’s first all-electric fire stations, using no outside energy sources other than diesel fuel for one or two of the fire trucks. Multiple energy sources will power the station, including solar roof panels and geothermal wells. The two-story building features three truck bays, two fire poles, dispatch area, contamination room, and gear storage.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021