flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

5 things AEC pros need to know about low-e glass

5 things AEC pros need to know about low-e glass

Tips to help architects, engineers, and contractors understand and explain the differences among low-e glasses and their impact on building performance


By PPG Glass Education Center | May 17, 2013
St. Joseph Patient Care Center, Orange, Calif. Photo: Tom Kessler
St. Joseph Patient Care Center, Orange, Calif. Photo: Tom Kessler

Low-emissivity (low-e) glasses are critical to making today’s buildings brighter, more energy-efficient and more sustainable. By controlling solar heat gain and promoting daylighting, they help buildings use less energy for temperature control and lighting, while adding the human benefits associated with outdoor views and more pleasant working and living environments.

Here are five tips to help architects, engineers, and contractors understand and explain the differences among low-e glasses and their impact on building performance:

1. E = Emissivity. Emissivity refers to the relative ability of a material’s surface to radiate energy. Low-e glass has a microscopically thin coating that lowers the emissivity of the glass surface and is engineered to transmit energy from the visible light portion of the solar spectrum (between 380 and 780 nanometers), while reflecting energy from ultraviolet light (310 to 380 nanometers), which causes fading, and infrared light (above 780 nanometers), which makes buildings warmer. 

2. Think of a thermos. A thermos works by using a silver lining to continuously reflect and maintain the temperature of the drink it contains. Low-e glasses function according to the same principal, using multiple layers of silver or other low-emissivity materials in the coating to keep heat inside a building or prevent it from entering. Similarly, thermoses and insulating glass units (IGUs) are both designed with air spaces that provide a layer of insulation between the inside and outside.

 


CLICK IMAGE TO ENLARGE
 

 

3. More slivers of silver. Low-e coatings incorporate multiple layers of silver (or other low- emissivity materials) to control the transmission and reflection of heat and light. Recent technical advances now enable glass manufacturers to deposit up to three layers of silver on the glass substrate, which has enhanced the solar control capability of low-e glasses without diminishing their ability to transmit light.

4. Passive for insulation. Passive low-e glasses are usually made using the pyrolitic process, which means the coating is applied while the molten glass ribbon is still on the float line. This produces a “hard” coat that is fused to the glass surface and highly durable, but which has a higher emissivity that a solar-control low-e glass. Passive low-e glasses have decent insulating capabilities, but because of the limitations of metal deposition on the float line, they permit more solar infrared energy (heat) to pass through their coatings and become trapped inside the building. Consequently, passive low-e glasses are often the best choice for cold, heating-dominated climates.   

5. Solar control to reduce heat gain. Coatings for solar control, low-e glasses are applied to pre-cut sheets of glass in a vacuum chamber at room temperature. This gives glass manufacturers the ability to deposit more sophisticated coatings (with multiple layers of silver) on the glass substrate, which improves solar control of the infrared (heat) portion of the solar spectrum without substantially diminishing the transmittance of visible light. These coatings are the best choice for hot, cooling-dominated (and moderate) climates. The lower emissivity of solar control low-e glasses also provides better insulating values to maintain the interior temperatures.

To learn more about low-e glass and other topics related to designing, specifying and building with glass, visit the PPG Glass Education Center at http://educationcenter.ppg.com/.

Related Stories

High-rise Construction | Aug 11, 2015

Calatrava's Turning Torso wins CTBUH's 10 Year Award

The 623-foot, 57-story tower was the world's first twisting skyscraper. Completed in 2005, the building, designed by Santiago Calatrava, rotates 90 degrees along its height. 

Architects | Aug 11, 2015

Architecture firm compensation trending upwards

Latest AIA compensation survey finds average compensation for staff positions up 3.5 percent from early 2013

Architects | Aug 11, 2015

12 architecture schools join NCARB's 'speedy path to licensure' program

For architecture students, a license to practice may soon be available as early as graduation day

Architects | Aug 10, 2015

HDR expands its Canadian presence through merger with CEI Architecture

Public-private partnerships are expected to be one of the combined entity’s strengths.  

Retail Centers | Aug 10, 2015

Walgreens’ flagship in Hawaii harkens back to the island’s fishing culture

A house where canoes were made served as the model for this drug superstore’s design. 

Giants 400 | Aug 7, 2015

GOVERNMENT SECTOR GIANTS: Public sector spending even more cautiously on buildings

AEC firms that do government work say their public-sector clients have been going smaller to save money on construction projects, according to BD+C's 2015 Giants 300 report.

Giants 400 | Aug 7, 2015

K-12 SCHOOL SECTOR GIANTS: To succeed, school design must replicate real-world environments

Whether new or reconstructed, schools must meet new demands that emanate from the real world and rapidly adapt to different instructional and learning modes, according to BD+C's 2015 Giants 300 report.

Giants 400 | Aug 7, 2015

MULTIFAMILY AEC GIANTS: Slowdown prompts developers to ask: Will the luxury rentals boom hold?

For the last three years, rental apartments have occupied the hot corner in residential construction, as younger people gravitated toward renting to be closer to urban centers and jobs. But at around 360,000 annual starts, multifamily might be peaking, according to BD+C's 2015 Giants 300 report.

Giants 400 | Aug 7, 2015

UNIVERSITY SECTOR GIANTS: Collaboration, creativity, technology—hallmarks of today’s campus facilities

At a time when competition for the cream of the student/faculty crop is intensifying, colleges and universities must recognize that students and parents are coming to expect an education environment that foments collaboration, according to BD+C's 2015 Giants 300 report.

Giants 400 | Aug 7, 2015

RECONSTRUCTION AEC GIANTS: Restorations breathe new life into valuable older buildings

AEC Giants discuss opportunities and complications associated with renovation, restoration, and adaptive reuse construction work.

boombox1
boombox2
native1

More In Category

Giants 400

Top 100 Architecture Engineering Firms for 2024

Stantec, HDR, Page, HOK, and Arcadis North America top Building Design+Construction's ranking of the nation's largest architecture engineering (AE) firms for nonresidential building and multifamily housing work, as reported in BD+C's 2024 Giants 400 Report.



Giants 400

Top 200 Architecture Firms for 2024

Gensler, HKS, Perkins&Will, Corgan, and Populous top Building Design+Construction's ranking of the nation's largest architecture firms for nonresidential building and multifamily housing work, as reported in BD+C's 2024 Giants 400 Report.


halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021