flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

5 factors that can affect thermal stress break risk of insulated glass units

5 factors that can affect thermal stress break risk of insulated glass units

Glass type, glass coating, shading patterns, vents, and framing system can impact an IGU’s risk for a thermal break.


By PPG Glass Education Center | July 7, 2014
Glass type, glass coating, shading patterns, vents, and framing system can all i
Glass type, glass coating, shading patterns, vents, and framing system can all impact an IGUs risk for a thermal break. Illustr

Thermal stress is one of many factors that can cause glass to break, even when it is not impacted by a projectile. 

Such failures usually are not a testament to the quality of the glass, but rather the result of temperature imbalance within the glass, which can occur when the center of a window or insulating glass unit (IGU) heats and expands while the edges remain cool. 

The resulting thermally induced tensile stress on the glass edges can exceed the strength of the glass itself, causing it to break at approximately a 90-degree angle.

Working closely with the IGU fabricator and glass supplier, and conducting a thermal stress analysis at the beginning of the design phase can help architects specify the proper glass for their projects. Here are five thermal stress related rules-of-thumb to consider when specifying glass:  

1. Clear or color? Glass can be clear, ultra-clear or tinted in colors such as gray, blue, green and bronze. Tinted glasses absorb solar radiation more than clear glass, which can cause them to collect heat and make them more susceptible to break from thermal stress.

2. Inner or outer surface? Reflective and low-emissivity (low-e) coatings, which improve the solar performance of glass primarily by reflecting solar radiation, can be placed on any one of four surfaces in a dual-pane IGU.  While they are usually placed on the inner glass surfaces of the IGU, the coating orientation and the associated risk of thermal stress has to be taken into account.

3. Sunny or shady? Outdoor shading, including overhangs, adjacent buildings, and trees, is one of the most dynamic elements to consider when analyzing thermal stress. Minimizing locations where non-uniform shading of IGUs can occur will help avoid extreme temperature gradients. Interior shading devices, such as blinds or drapes, can increase glass temperature by reflecting solar radiation back through the glass or by reducing the convection and conduction of heat away from the glass. To minimize thermally induced edge stress, the air space around the window glass should be ventilated. There should be a gap of several inches between the glass and shades, blinds or drapes.  

4. Where to place a vent? If heating vents, registers and grilles point directly at glass units, warm air will cause the glass to heat up and, under certain conditions, break. Make sure vents are carefully placed to reduce thermal stress risk and avoid placing them between the glass and interior shading devices.

5. How to frame it? Glass framing systems that have low heat capacity also can minimize the chance of a thermal stress break. Structural gaskets and narrow metal framing are favorable because they have less effect on the glass temperature around the edges. Conversely, massive framing – whether metal, masonry or even wood – can have more of an effect, resulting in thermal imbalance and risk of glass breakage. 

To learn more about avoiding thermal breakage of insulated glass units and other glass-related topics, visit the PPG Glass Education Center at www.educationcenter.ppg.com.

Related Stories

Architects | May 3, 2016

Study finds engineering, architecture among the best entry-level jobs

The results balanced immediate opportunity, job growth potential, and job hazards.  

Architects | Apr 25, 2016

Notable architects design mini-golf holes for London Design Festival

Visionaries like Paul Smith, Mark Wallinger, and the late Zaha Hadid all helped in designing the course, which will be integrated into London’s Trafalgar Square.

University Buildings | Apr 25, 2016

New University of Calgary research center features reconfigurable 'spine'

The heart of the Taylor Institute can be anything from a teaching lab to a 400-seat theater.  

Architects | Apr 22, 2016

What leads to success in the density-driven workplace?

CallisonRTKL’s Kirill Pivovarov explores how densification can lead to increased productivity and innovation in the workplace.

Government Buildings | Apr 22, 2016

Public-private partnership used to fund Long Beach Civic Center Project

Arup served as a lead advisor and oversaw financial, commercial, real estate, design, engineering, and cost consulting.

High-rise Construction | Apr 20, 2016

OMA reveals designs for its first Tokyo skyscraper

The goal is for the Toranomon Hills Station Tower to transform its neighborhood and serve as a hub for international business.

Architects | Apr 20, 2016

Bill Hellmuth named HOK’s new CEO

Hellmuth has been HOK's President since 2005. The firm will be led by a design principal for the first time since 1990.

Libraries | Apr 18, 2016

Best in Library Design: AIA names seven projects 2016 Library Building Awards winners

Snøhetta’s Ryerson University student center and the Billings (Mont.) Public Library by Will Bruder+Partners highlight the seven winning projects.

Architects | Apr 14, 2016

You can watch over 50 architectural documentaries on YouTube for free

The Arts & Culture Bureau YouTube channel offers architectural documentaries about structures and works that span thousands of years and dozens of locations

Senior Living Design | Apr 14, 2016

Creating a home for eldercare using the ‘Green House’ design concept

VOA Associates’ Douglas King offers design considerations in implementing the Green House concept in eldercare for continuing care retirement communities.

boombox1
boombox2
native1

More In Category

Great Solutions

41 Great Solutions for architects, engineers, and contractors

AI ChatBots, ambient computing, floating MRIs, low-carbon cement, sunshine on demand, next-generation top-down construction. These and 35 other innovations make up our 2024 Great Solutions Report, which highlights fresh ideas and innovations from leading architecture, engineering, and construction firms.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021